PONDICHERRY UNIVERSITY

DEPARTMENT OF STATISTICS

SYLLABUS FOR B.Sc. STATISTICS (Honours) (NEP 2020 Pattern)

Effective from the Academic Year 2023-2024

NEP -B.Sc. Statistics - Course Structure

Department of Statistics, Pondicherry University Curriculum for the B.Sc. Statistics (Honours/Honours by research)

(Under the National Education Policy 2020)

National Education Policy 2020

National Education Policy (NEP) 2020 endeavours to provide quality education to students at all levels including those enrolled for higher education (Level 5 and above). Its main aim is to develop individuals who are thoughtful, well-rounded and creative by imparting them holistic and multidisciplinary education. More importantly, NEP 2020 offers students the freedom to shape their studies. Taking into consideration the main recommendations of NEP 2020, University Grants Commission (UGC) has developed a new 'Curriculum and Credit Framework for Undergraduate Programmes' (CCFUP) by revising the existing Choice Based Credit System (CBCS). This framework was published in December 2022 integrating the ethos of NEP 2020 to allow for multiple entry and exit, flexible degree options thereby facilitating students to pursue their career path by choosing the subject/field of their interest.

The guidelines for Undergraduate programme in Statistics to be offered by Pondicherry University have been framed in line with NEP regulations framed by Pondicherry University for undergraduate programmes based on CCFUP and can be accessed by following the link: Curriculum and Credit Framework for Undergraduate Programmes. CCFUP outlines an indicative framework for Higher Education Institutions (HEIs) to develop undergraduate programmes but also provides necessary flexibility to design programmes to suite the needs of students and HEIs. Hence, this document has been prepared by the Department of Statistics, Pondicherry University for undergraduate programmes in Statistics to be offered by Pondicherry University adhering to minimum requirements outlined in CCFUP with suitable modifications as necessary and approved by the competent Board of Studies.

Definitions

- **a. Semester:** A semester comprises of approximately 90 working days and an academic year is divided into two semesters.
- **b. Summer** Term: A summer term is for <u>four to six weeks</u> during summer vacation. Internship/apprenticeship/work-based vocational education and training can be carried out during the summer term, especially by students who wish to exit after two semesters or four semesters of study.
- **c. Credit:** A credit is a unit by which the coursework is measured. It determines the number of hours of instruction required per week over the duration of a semester which will be approximately minimum 15 weeks. Hence, a 4 credit <u>lecture course</u> will have 4 hours of instruction per week.

Type of Course and Number of Credits

- 1. Major Discipline Courses: Major discipline is the discipline or subject of main focus and the degree will be awarded in that discipline. For students enrolled in Department of Statistics, courses related to Statistics marked as 'Discipline-Specific Course Core' mentioned in Table 3 are considered as Major Discipline Courses. All Major Discipline Courses will be for 4 credits.
 - *Change of Major:* Students can opt for a change of major within the broad discipline (Natural and Physical Sciences, Mathematical, Statistics, and Computational Sciences, Library, Information and Media Sciences, Commerce and Management, and Humanities and Social Sciences) at the end of the first year. additional 10% seats over and above the sanctioned strength to accommodate the request for a change of major. Any unfilled

or vacant seats may be filled with those seeking a change of Major. Preference will be given to those who have got highest CGPA with no arrears in the first year.

- 2. Minor Discipline Courses: These courses help a student to gain a broader understanding beyond the major discipline. All Discipline-Specific Minor Courses will be for 4 credits. Students who take a sufficient number of courses in a discipline or an interdisciplinary area of study other than the chosen major will qualify for a minor in that discipline or in the chosen interdisciplinary area of study. 50% of the total credits from minors must be secured in the relevant subject/discipline (Statistics) and another 50% of the total credits from a minor can be earned from any discipline as per students' choice. Student can declare the choice of the minor and vocational stream at the end of the second semester, after exploring various courses.
- **3.** Other Courses: All courses under the Interdisciplinary / Multidisciplinary, Ability Enhancement (language), and Skill Enhancement categories will be of 3-credits.

Multidisciplinary Courses: All UG students are required to undergo 3 introductory-level courses relating to any of the broad disciplines relating to Natural and Physical Sciences / Mathematics, Statistics, and Computer Applications / Library, Information, and Media Sciences / Commerce and Management / Humanities and Social Sciences. These courses are intended to broaden the intellectual experience and form part of liberal arts and science education. Students are not allowed to choose or repeat courses already undergone at the higher secondary level (12th class) in the proposed major and minor stream under this category.

Ability Enhancement Courses (Language): Students are required to achieve competency in a Modern Indian Language (MIL) and in the English language with special emphasis on language and communication skills.

Vocational Education and Training: Vocational Education and Training will form an integral part of the undergraduate programme to impart skills along with theory and practical. A minimum of 12 credits will be allotted to the 'Minor' stream relating to Vocational Education and Training and these can be related to the major or minor discipline or choice of the student. These courses will be useful to find a job for those students who exit before completing the programme.

4. Common Value-Added Courses: Courses under Value Added, Summer Internship / Apprenticeship / Community outreach activities, etc., will be of 2-credits.

Value-Added Courses: These courses will be offered at the university level commonly for all students registered for various undergraduate programmes. These courses include Understanding India, Environmental Science, Health & Well-being / Yoga, Digital & Technological Solutions or any other course offered by the university from time to time. The credit for each of these courses will be in accordance with the university guidelines. One or two courses of these will be offered in each semester upto 2nd semester.

Summer Internship: All students will also undergo internships / Apprenticeships in a firm, industry, or organization or Training in labs with faculty and researchers in their own or other HEIs/research institutions / industry / government bodies during the summer term. Students who wish to exit after the first two semesters will undergo a 4-credit work-based learning/internship during the summer term in order to get a UG Certificate.

5. Research Project / Dissertation: Students choosing a 4-Year Bachelor's degree (Honours with Research) are required to take up research projects under the guidance of a faculty member. The students are expected to complete the Research Project in the eighth semester. The research outcomes of their project work may be published in peer-reviewed journals or may be presented in conferences /seminars or may be patented.

Intake for B.Sc. (Honours) Statistics

Department of Statistics, Pondicherry University-30 students

Eligibility

Senior Secondary School Leaving Certificate or Higher Secondary (12th Grade) Certificate passed with a minimum of 50% of marks with Statistics or Mathematics as subjects of study or equivalent stage of education corresponding to Level-4 from board recognised by UGC or Government of India.

Undergraduate Programmes

- a. Undergraduate Certificate in Statistics: Students who opt to exit after completion of the first year and have secured 42 credits will be awarded a UG certificate if, in addition, they complete one vocational course of 4 credits during the summer vacation of the first year. These students are allowed to re-enter the degree programme within three years and complete the degree programme within the stipulated maximum period of seven years.
- **b.** Undergraduate Diploma in Statistics: Students who opt to exit after completion of the second year and have secured 84 credits will be awarded the UG diploma if, in addition, they complete one vocational course of 4 credits during the summer vacation of the second year. These students are allowed to re-enter within a period of three years and complete the degree programme within the maximum period of seven years.
- **c.** 3-year Bachelor of Arts (B.Sc.) Statistics: Students who wish to undergo a 3-year UG programme will be awarded UG Degree in the Major discipline after successful completion of three years, securing 124 credits and satisfying the minimum credit requirement as given in Table 2.
- **d. 4-year B.Sc.** (**Honours**) **Statistics:** A four-year UG Honours degree in the major discipline will be awarded to those who complete a four-year degree programme with 164 credits and have satisfied the credit requirements as given Table 2.
- **e. 4-year B.Sc.** (**Honours with Research**) **Statistics**: Students who secure a CGPA of 7.5 and above in the first six semesters and wish to undertake research at the undergraduate level can choose a research stream in the fourth year. They should do a research project or dissertation under the guidance of a faculty member of the University/College. The research project/dissertation will be in the major discipline. The students who secure 160 credits, including 12 credits from a research project/dissertation, are awarded UG Degree (Honours with Research).

Infrastructure: The **Departments** offering UG Degree 4-year (Honours with Research) have required infrastructure the library, must the such access as journals, computer lab and software, laboratory facilities carry out experimental research work and additional permanent faculty members as approved by the Board of Studies.

Duration of the Programme

- a. The duration of the UG programme is 4 years or 8 semesters. Students who desire to undergo a 3-year UG Programme will be allowed to exit after completion of the 3rd year. If a student wants to leave after the completion of the first or second year, the student will be given a UG Certificate or UG Diploma, respectively, provided they secure the prescribed number of credits (as given in Table 2). Students who exit with a UG certificate or UG diploma are permitted to re-enter within three years and complete the degree programme.
- **b.** Students may be permitted to take a break from the study during the period of study but the total duration for completing the programme shall not exceed 7 years.

Minimum Credit Requirements

The course-wise breakup of minimum credit requirements for B.Sc. Statistics, B.Sc. (Honours) Statistics and B.Sc. (Honours with Research) Statistics programme as provided in UGC Curriculum and credit framework.

Table 1: Minimum Credit Requirements to Award Degree under Each Category prescribed by PU NEP regulation 2023 -24

S. No.	Broad Category of Course	Minimum	Credit Requirement
		3-year B.Sc. Statistics	4-year B.Sc. (Honours) Statistics
1	Major (Core)	60	80
2	Minor Stream	24	32
3	Multidisciplinary/Inter-disciplinary	09	09
4	Ability Enhancement Courses (AEC)#	12	12
5	Skill Enhancement Courses (SEC)	09	09
6	Value Added Courses common for all UG	08	08
7	Summer Internship	04 (included in Major courses of 60 credits)	04 (included in Major courses of 80 credits)
8	Community engagement and service	2 credits (1 course)	2 credits (1 course)
9	Research Project / Dissertation*	-	12
	Total	124	164

Note: *Compulsory for only those students who opt for B.Sc. (Honours with Research) Statistics programme. Honours students not undertaking research will do 3 courses for 12 credits in lieu of a research project / Dissertation.

Undergraduate Degree Programmes with Flexible Degree Options

- a. **UG Degree Programmes with Single Major:** A student has to secure a minimum of 50% credits from the major discipline for the 3-year/4-year UG degree to be awarded a single major.
- b. **UG Degree Programmes with Single Major and Minor:** A student has to secure at least 50% of the credits earmarked for 'Minor Stream' from a particular major discipline apart from the discipline that he/she has selected as major discipline to be able to obtain a major with a minor in that particular discipline. Accordingly, for 3-year / 4-year UG Degree programme, a student must earn at least 12 credits and 16 credits respectively in a particular major discipline to be eligible to obtain a minor in that subject. For example, if a student pursuing an Statistics major obtains a minimum of 12 credits from a bunch of courses in Statistics, then the student will be awarded B.A. degree in Statistics with a Minor in Statistics.

Evaluation and Award of Grades

Weightage of marks: The weightage of marks between continuous Internal Assessment and End- Semester Examination shall be 40 and 60, respectively.

Passing Minimum: A student is declared to have passed a given course only when he/she secures a minimum of 40 % marks in the end-Semester Examination and an aggregate of 50 % marks (both Internal and End-Semester

Examination put together). There is no minimum passing marks for the internal assessment component. This is subject to revision as per university regulation.

Internal Assessment: Internal Assessment Component of 40 marks consists of the following:

1. Two Class Tests (15+15) : 30 marks 2. Assignment/Seminar : 10 marks

Total: 40 marks

However internal assessment for skill based and vocational courses can have components like practicum/skill based test/ assessment of field report etc.

End-Semester examination Question Paper Pattern for major/minor: The question paper pattern for each of the subjects for the End-Semester written examination shall be as given below:

Section A : FOUR (04) questions to be answered out of SIX 4×6 marks = 24 marks

(06) questions

Section B : THREE (03) questions to be answered out of FIVE 3 x 12 marks = 36 marks

(05) questions

Total 60 marks

Both sections should be representative of the entire syllabus hence, must contain at least one question from each module.

However, depending on the course contents and the orientation of the teaching, the above question paper pattern can be modified for individual courses subject to the approval from the departmental programme committee. In case of skill based and vocational courses, end semester examination can have components like practicum/ skill based test/ assessment of field report etc. with composition of marks as approved by the departmental programme committee.

For Summer Internship at the end of first or second year, the evaluation pattern will be as follows: Internship report: 60 marks and Viva-Voce: 40 marks

Grading: Grading of the marks obtained by the students shall be made as per the norms as prescribed by the University which is subject to change from time to time.

Attendance: Each student shall obtain a minimum of 70 per cent (70%) attendance to be eligible for appearing for the End-Semester Examination details of which is prescribed by the academic regulations of the University. Concessions on minimum attendance, as per the university guidelines, if any, will be applicable.

Table 2: Curriculum Structure and Credit requirements for UG Programme in Statistics in Pondicherry University

Course-wise breakup of minimum credit requirements for B.Sc. Statistics, B.Sc. (Honours) Statistics and B.Sc. (Honours with Research) Statistics programme to be offered by the Department of Statistics, Pondicherry University.

Semester – I

Course Code	Type of Course	Credits	Title of the Course
STAT 111	Major Discipline 1	4	Descriptive Statistics
STAT 112	Minor Discipline 1	4	Mathematics for Statistics - I
ENG 1	Ability Enhancement Courses (AEC)	3	English – I (offered by English Dept.)
STAT 113	Multi-disciplinary Courses (MD) (Students have to select a course from a Bouquet of courses)	3	Introduction to Statistics (for other department students)
VAC 1	Value added Course (VAC)	2	Understanding India
VAC 2	Value added Course (VAC)	2	Environmental Science
STAT 114	Skill Enhancement Course(SEC 1)	3	Data Analysis with Excel – I
	Semester Credits	21	

Semester - II

Course Code	Type of Course	Credits	Title of the Course
STAT 121	Major Discipline 2	4	Probability Theory
STAT 122	Minor Discipline 2	4	Mathematics for Statistics - II
MIL 1	Ability Enhancement Courses	3	Language – I
	(AEC)		(Offered by Languages
			Dept.)
STAT 123	Multi-disciplinary Courses (MD)	3	Introduction to Probability
	(Students have to select a course		Theory
	from a Bouquet of courses)		(for other departments)
VAC 3	Value added Course (VAC)	2	Health and Well
			Being/YOGA/ Fitness
VAC 4	Value added Course (VAC)	2	Digital Technology
STAT 124	Skill Enhancement Course (SEC 2)	3	Data Analysis with Excel – II
	Semester Credits	21	

Students who opt to exit after completion of first year will be awarded **UG Certificate in Statistics** provided they have earned a minimum of **42 credits** and in addition, they complete work based vocational course/internship of **4 credits** during the summer vacation of the first year.

Semester – III

Course Code	Type of Course	Credits	Title of the Course
STAT 231	Major Discipline 3	4	Distribution Theory
STAT 232	Major Discipline 4	4	Applied Statistics
STAT 233	Minor Discipline 3	4	Real Analysis
STAT 234	Multi-disciplinary Courses (MD) (Students have to select a course from a Bouquet of courses)	3	Statistical Methods
ENG 2	Ability Enhancement Courses (AEC)	3	English – II (offered by English Dept.)
STAT 235	Skill Enhancement Course (SEC)	3	Exploratory Data Analysis Using R
	Semester Credits	21	

Semester – IV

Course Code	Type of Course	Credits	Title of the Course
STAT 241	Major Discipline 5	4	Sampling Theory
STAT 242	Major Discipline 6	4	Estimation Theory
STAT 243	Major Discipline 7	4	Official Statistics
STAT 244	Minor Discipline 4	4	Numerical Methods
MIL 2	Ability Enhancement Courses (AEC)	3	Language – I (Offered by Languages Dept.)
VAC 5	Value added Course (VAC)	2	Community Engagement and Service
	Semester Credits	21	

Students who opt to exit after completion of second year will be awarded **UG Diploma in Statistics** provided they have earned a minimum of **84 credits** and in addition, they complete work based vocational course/internship of **4 credits** during the summer vacation of the second year.

Semester-V

Course Code	Type of Course	Credits	Title of the Course
STAT 351	Major Discipline 8	4	Testing of Statistical Hypotheses
STAT 352	Major Discipline 9	4	Demography
STAT 353	Major Discipline 10	4	Statistics using R
STAT 354	Minor Discipline 5	4	Operations Research
STAT 355	Major Discipline 11 (Internship)	4	Internship
	Semester Credits	20	

Semester - VI

Course Code	Type of Course	Credits	Title of the Course
STAT 361	Major Discipline 12	4	Principles of Experimental Design
STAT 362	Major Discipline 13	4	Actuarial Statistics
STAT 363	Major Discipline 14	4	Introductory Statistics using Python
STAT 364	Major Discipline 15	4	Statistical Quality Control
STAT 365	Minor Discipline 6	4	Basic Econometrics
	Semester Credits	20	

Students who opt to exit they will be awarded with a **B.Sc. Statistics** after successful completion of three years, provided they have earned a minimum of **124 credits.**

Semester - VII

Course Code	Type of Course	Credits	Title of the Course
STAT 471	Major Discipline 16	4	Advanced Probability Theory
STAT 472	Major Discipline 17	4	Advanced Distribution Theory
STAT473	Major Discipline 18	4	Statistical Inference I
STAT 474	Minor Discipline 7	4	Advanced Sampling Theory
STAT 475	Minor Discipline 8	4	Regression Analysis
	Semester Credits	20	

Semester – VIII - B.Sc. Statistics (Honours by course work)

Course Code	Type of Course	Credits	Title of the Course
STAT 481	Major Discipline 19	4	Statistical Inference II
STAT 482	Major Discipline 20	4	Multivariate Statistical Analysis
STAT 483	Major Discipline 21	4	Design of Experiments
STAT 484	Major Discipline 22	4	Stochastic Processes
STAT 485	Major Discipline 23	4	Reliability Theory
	Semester Credits	20	

A student successfully who complete a four-year degree programme, earning a minimum of **164 credits** will be awarded a degree in **B.Sc. Statistics** (**Honours**)

Semester – VIII - B.Sc. Statistics (Honours by research)

Course Code	Type of Course	Credits	Title of the Course
STAT 481	Major Discipline 19	4	Statistical Inference II
STAT 482	Major Discipline 20	4	Multivariate Statistical Analysis
STAT 483			Design of Experiments
STAT 484			Stochastic Processes
STAT 485			Reliability Theory
STAT 486			Research Methodology
STAT 487	Major Discipline 21	12	Research Project/ Dissertation
	Semester Credits	20	

Students who secure a minimum of **7.5 CGPA** in the first six semesters and wish to undertake research at the undergraduate level can choose a research stream in the fourth year. They should do a research project or dissertation under the guidance of a faculty member of the University. The research project/dissertation

will be in the major discipline. The students who secure a minimum of 164 credits , including 12 credits from a research project/dissertation, will be awarded B.Sc. Statistics (Honours with research).

STUDENTS WHO COMPLETE UG DEGREE IN THE MAJOR DISCIPLINE WITH HONOURS CAN OPT FOR ONE YEAR MASTERS DEGREE WITH RESEARCH

(FOR THOSE WHO NOT OPTED FOR UG DEGREE BY RESEARCH)

Semester – IX - M.Sc. Statistics (with research)

Course Code	Type of Course	Credits	Title of the Course
STAT 591	Major Discipline 19	4	Multivariate Statistical Analysis
STAT 592	Major Discipline 20	4	Research Methodology
STAT 593	Major Discipline 21#	4	Probability Distribution and Inference
STAT 594			Stochastic Modelling and Optimization Methods
STAT 595			Life Testing and Bayesian Inference
STAT 596			Biostatistics and Mixture Models
	Semester Credits	12	

[#] Student can opt for one paper from the listed courses as specialization

Semester – X - M.Sc. Statistics (with research)

Course Code	Type of Course	Credits	Title of the Course
STAT 597	Research Project/ Dissertation		Project Work and Comprehensive Viva-Voce
	Semester Credits	12	

FIRST YEAR – SEMESTER I

Course Code	STAT 111	DESCRIPTIVE STATISTICS	L	T	P	Credits
Core	MAJOR 1	Semester I	4	1	-	4
Pre-requisite		Knowledge of Mathematics		llabus ersion		2023-24

Course Objectives

To learn the basic concepts of Statistics such as types of data and graphical approach to data.

Expected Course Outcomes

On the successful completion of the course, student will be able to classify and analyze the data

Unit:1

Definition of statistics: Scope and limitations of statistics – Types of data – Nominal, Ordinal, Ratio, Interval scale data – Primary and Secondary data – Data presentation tools – One dimensional, two dimensional data presentation – line diagram – Box plots – stem and Leaf plots – Scatter plots. Measures of Central Tendency: Arithmetic Mean, Median, Mode, Geometric mean and Harmonic mean.

Unit:2

Measures of Dispersion: Range, Quartile Deviation, Mean Deviation and Standard Deviation, Coefficient of Variation. Central and Non-Central moments and their interrelationship. Sheppard's correction for moments. Skewness and kurtosis.

Unit:3

Curve fitting: Bi-variate data, Principle of least squares, fitting of straight line, Second-degree parabola, power curve and exponential curves.

Correlation: Meaning, Types of Correlation, Measures of Correlation: Scatter diagram, Karl Pearson's Coefficient of Correlation, Rank Correlation Coefficient (with and without ties), Bi-variate frequency distribution, correlation coefficient for bi-variate data and simple problems. Concept of multiple and partial correlation coefficients (three variables only) and properties.

Unit:4

Attributes: Notations, Class, Order of class frequencies, Ultimate class frequencies, Consistency of data, Conditions for consistency of data for 2 and 3 attributes only, Independence of attributes, Association of attributes and its measures, Relationship between association and colligation of attributes, Contingency table: Square contingency, Mean square contingency, Coefficient of mean square contingency, Tschuprow's coefficient of contingency.

Total Lecture Hours 60 Hours

Books for Study

- 1 Hooda.R.P. (2003), Statistics for Business and Economics, 3/e, Mac Millan
- 2 Medhi.J. (2006), Statistical Methods: An Introductory Text, Wiley Eastern Ltd.
- 3 Gupta.S.C. and Kapoor.V.K. (2014), Fundamentals of Mathematical Statistics, 12/e, Sultan Chand and sons.
- 4 Agarwal.B.L (2013), Basic Statistics, 6/e, New Age International Publishers.

- 1 Anderson.R, Sweeney.J and Williams.A (2019): Statistics for Business and Economics, 13/e, Cengage Publishers
- 2 Sheldon M.Ross (2005), Introductory Statistics, 2/e, Elsevier Publications.
- Murray R. Spiegel and Larry J. Stephens (2005), Schaum's Outline of Theory and Problems of Statistics, 3/e, Tata Mc Graw Hill Publishing Company Ltd, New Delhi.

Course Code	STAT 112	MATHEMATICS FOR STATISTICS – I	L	T	P	Credits
Core	MINOR 1	Semester II	4	1	-	4
Pre-requisite	,	Knowledge in Mathematics (higher secondary level)	Sylla Ver	abus sion	202	3-24
Course Objec	tives		ı			
1. To understa	nd the derivative	es of functions				
	e concept of deri	vative				
	rse Outcomes					
		ning of derivatives				
	-	ssive differentiation				
	some basic fun	ctions and its partial differentiation				
Unit:1						
		rentiation rules- Rate of change- Derivatives of trigon				
	ifferentiation rat	ional exponents Inverse functions and their derivatives-	- Hype	rbolic	func	ction.
Unit:2						
		ncreasing decreasing functions - Maxima minima		r –Aj	proz	kimation-
	ewton method- N	Mean value theorems- Taylor theorem- Maclaurins theo	rem.	ı		
Unit:3						
-	est of concavity&	convexity point of inflexion- Multiple point training cu	ırves i	n Cart	esia	ı & Polar
co-ordinates.						
Unit:4						
Successive diffe	erentiation- Leibi	nitz rule- Problems and examples - Exponent function a	$x, \log x$	—fun	ction	s-
Theorems on ex	ponent & Log fu	nctions- Partial differentiation- Chain rule- Eulers the	orem.			
		Total Lecture H	ours	60 H	Ioui	'S
Books for Stu	dy					
1 George B.T	homas, Maurice	D.Weir and Joel Hass, Thomas' Calculus 12th Edition,	Pearso	n Edu	catio	n, 2015
Reference Boo	oks					

- Richard Courant and Fritz John, Introduction to Calculus and Analysis, Vol.I, Springer 1999.
- 2 Serge Lang A First course in Calculus 5th edition, Springer, 1999.

Course Code	STAT 113	INTRODUCTION TO STATISTICS	L	T	P	Credits
Core	Multi-Disciplinary (MD 1)	Semester I	3	1	-	3
Pre-requisite		Knowledge in Mathematics (at higher secondary level)	Sylla Vers		202	3-24

Course Objectives

The main objectives of this course are to:

- 1. To learn the about different data types, diagrammatic and graphical representation of the data
- 2. To learn about measure of central tendency and measures of dispersion
- 3. To learn about correlation and regression

Expected Course Outcomes

On the successful completion of the course, student will have knowledge on theoretical as well as practical approach on

- 1. various techniques used in summarization, presentation and analysis of different types of Statistical data
- 2. Simple and rank correlation, Partial and Multiple correlation coefficients.
- 3. Fitting of linear and quadratic regressions using principle of least squares, Association Analysis

Unit:1

Introduction: Definition and scope of Statistics, concepts of statistical population and sample. Scales of measurement -nominal, ordinal, interval and ratio. Variables and attributes, Diagrammatical Representation of Data, Summarization of Data: Frequency Distribution and Graphical Presentation.

Unit:2

Measures of Central Tendency: mathematical and positional. Measures of Dispersion: range, quartile deviation, mean deviation, standard deviation, coefficient of variation, moments, measures of skewness and kurtosis.

Unit:3

Bivariate data: Definition, scatter diagram, simple correlation, rank correlation. Trivariate Data: Partial and Multiple correlation coefficients.

Unit:4

Fitting of linear and quadratic regression using principle of least squares. Theory of attributes and consistency of data, independence and association of attributes, measures of association and contingency for 2 x 2 and r x s contingency tables.

Books for Study

Goon, A.M., Gupta, M.K. and Dasgupta, B. (2013). Fundamental of Statistics, Vol I, World Press, Kolkata

Total Lecture Hours

60 Hours

- 2 Mood, A.M. Graybill, F.A. and Boes, D.C. (2017). Introduction to the Theory of Statistics, 3rd Edn., (Indian Edition), Tata McGraw-Hill Pub. Co. Ltd.
- Rohatgi, V.K. and Saleh, A.E. (2008). An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.

Course Code	e STAT 114	DATA ANALYSIS USING EXCEL-I	L	T	P	Credits
Core	Skill Enhancement (SEC 1)	Semester I	3	1	-	3
Pre-requisite	2		Sylla Vers		202	3-24
Course Obje	ectives:					
	ectives of this course are:					
2. To impro	ve the analytical skills of st	resent the data with various statistical measurudents using built in statistical functions and			cel	
		n analysis for the given data.				
	urse Outcomes:					
Students will						
		cal analysis using the statistical functions in e	xcel			
		graphically in a meaningful manner				
	<u> </u>	th many statistical techniques and functions in	n excel			
	troduction to Excel					
_	_	ta operations – Creating forms to enter data – c		nation	of tex	kt, number
 Splitting of 	data into columns – Sort a	nd reverse sort – Grouping and ungrouping of	f data			
Unit:2 G	raphical statistics using I	Excel				
One dimensi	onal, two dimensional data	a presentation – Histogram, line diagram – E	Box plo	ts - S	catter	plots. Ba
charts – stack	, subdivided, pie charts, ra	dar graphs				
Unit:3 N	leasures of Central Tendo	ency				
Arithmetic M	lean, Median, Mode, Geom	netric mean and Harmonic mean, Range, Quar	tile De	viation	١,	
Unit:4 Si	tatistical measures using l	Excel				
Mean Devia	tion, Standard Deviation,	Coefficient of Variation. Central and Non	-Centra	1 mor	nents	and the
interrelations	hip. Sheppard's correction	for moments. Skewness and kurtosis.				
Total Lectur	e Hours			45	Hou	rs
Books for St	udv:			<u> </u>		
	•	Simple: Do it Yourself on PC, PHI, India, 2/o	e			
		1				

Berk, K. N and Carey, P (2000), Data Analysis with Microsoft Excel, S.Chand (G/L) & Company Ltd, 3/e

Wayne, W L (2019), Microsoft Excel: Data Analysis & Business Model, PHI

Nelson, S.L and Nelson, E C (2018), Microsoft data analysis for dummies, Wiley

FIRST YEAR - SEMESTER II

Core MAJOR 2 Semester II 4 1 - 4 Pre-requisite	Course Code	STAT 121	PROBABILITY THEORY	L	T	P	Credits
Course Objectives The main objectives of this course are to: 1. Review the basic concepts of Random experiments, Trials and Events, and Sample Space 2. Study about properties of Probability and obtaining event probability 3. Study Conditional events and probability Expected Course Outcomes On the successful completion of the course, student will be able to: 1. Understand the basic concepts of probability theory 2. Study addition and multiplication theorem, moment generating function 3. Learn about various types of Convergence and Central Limit theorem Unit:1 Introduction to probability theory – Random experiments, Events, Sample space, Operations on events and types events – Mathematical, Statistical and Axiomatic definitions of Probability – Simple problems. Unit:2 Addition and Multiplication law of probability – Boole's inequality- Conditional probability – Bayes Theorem Simple problems - Random variable – Discrete and Continuous – Probability Mass function and Probability Dens Function – Bivariate random variables Unit:3 Expectation – Variance - Moments: Raw and central moments and their relations, Moment Generating Functions a Probability Generating Functions–Simple problems. Unit:4 Chebychev's inequality - Cauchy – Schwartz inequality – Definition of convergence in probability and distributio Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)	Core	MAJOR 2	Semester II	4	1	-	4
The main objectives of this course are to: 1. Review the basic concepts of Random experiments, Trials and Events, and Sample Space 2. Study about properties of Probability and obtaining event probability 3. Study Conditional events and probability Expected Course Outcomes On the successful completion of the course, student will be able to: 1. Understand the basic concepts of probability theory 2. Study addition and multiplication theorem, moment generating function 3. Learn about various types of Convergence and Central Limit theorem Unit:1 Introduction to probability theory — Random experiments, Events, Sample space, Operations on events and types events — Mathematical, Statistical and Axiomatic definitions of Probability — Simple problems. Unit:2 Addition and Multiplication law of probability - Boole's inequality- Conditional probability — Bayes Theorem Simple problems - Random variable - Discrete and Continuous — Probability Mass function and Probability Dens Function — Bivariate random variables Unit:3 Expectation — Variance - Moments: Raw and central moments and their relations, Moment Generating Functions a Probability Generating Functions—Simple problems. Unit:4 Chebychev's inequality - Cauchy — Schwartz inequality — Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)	Pre-requisite			-		2023	3-24
1. Review the basic concepts of Random experiments, Trials and Events, and Sample Space 2. Study about properties of Probability and obtaining event probability 3. Study Conditional events and probability Expected Course Outcomes On the successful completion of the course, student will be able to: 1. Understand the basic concepts of probability theory 2. Study addition and multiplication theorem, moment generating function 3. Learn about various types of Convergence and Central Limit theorem Unit:1 Introduction to probability theory — Random experiments, Events, Sample space, Operations on events and types events — Mathematical, Statistical and Axiomatic definitions of Probability — Simple problems. Unit:2 Addition and Multiplication law of probability - Boole's inequality- Conditional probability — Bayes Theorem Simple problems - Random variable - Discrete and Continuous — Probability Mass function and Probability Dens Function — Bivariate random variables Unit:3 Expectation — Variance - Moments: Raw and central moments and their relations, Moment Generating Functions a Probability Generating Functions—Simple problems. Unit:4 Chebychev's inequality - Cauchy — Schwartz inequality — Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)	Course Objecti	ves					
On the successful completion of the course, student will be able to: 1. Understand the basic concepts of probability theory 2. Study addition and multiplication theorem, moment generating function 3. Learn about various types of Convergence and Central Limit theorem Unit:1 Introduction to probability theory — Random experiments, Events, Sample space, Operations on events and types events — Mathematical, Statistical and Axiomatic definitions of Probability — Simple problems. Unit:2 Addition and Multiplication law of probability - Boole's inequality- Conditional probability — Bayes Theorem Simple problems - Random variable - Discrete and Continuous — Probability Mass function and Probability Dens Function — Bivariate random variables Unit:3 Expectation — Variance - Moments: Raw and central moments and their relations, Moment Generating Functions a Probability Generating Functions—Simple problems. Unit:4 Chebychev's inequality - Cauchy — Schwartz inequality — Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)	 Review the Study about 	e basic concepts at properties of	of Random experiments, Trials and Events, and Sample S Probability and obtaining event probability	Space			
1. Understand the basic concepts of probability theory 2. Study addition and multiplication theorem, moment generating function 3. Learn about various types of Convergence and Central Limit theorem Unit:1 Introduction to probability theory — Random experiments, Events, Sample space, Operations on events and types events — Mathematical, Statistical and Axiomatic definitions of Probability — Simple problems. Unit:2 Addition and Multiplication law of probability — Boole's inequality— Conditional probability — Bayes Theorem Simple problems— Random variable — Discrete and Continuous — Probability Mass function and Probability Dens Function — Bivariate random variables Unit:3 Expectation — Variance — Moments: Raw and central moments and their relations, Moment Generating Functions a Probability Generating Functions—Simple problems. Unit:4 Chebychev's inequality— Cauchy— Schwartz inequality— Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN)— Central Limit theorem for i.i.d case (statement only)	Expected Cours	se Outcomes					
2. Study addition and multiplication theorem, moment generating function 3. Learn about various types of Convergence and Central Limit theorem Unit:1	On the successfu	ıl completion of	the course, student will be able to:				
Introduction to probability theory – Random experiments, Events, Sample space, Operations on events and types events – Mathematical, Statistical and Axiomatic definitions of Probability – Simple problems. Unit:2 Addition and Multiplication law of probability - Boole's inequality- Conditional probability – Bayes Theorem Simple problems - Random variable - Discrete and Continuous – Probability Mass function and Probability Dens Function – Bivariate random variables Unit:3 Expectation – Variance - Moments: Raw and central moments and their relations, Moment Generating Functions a Probability Generating Functions–Simple problems. Unit:4 Chebychev's inequality - Cauchy – Schwartz inequality – Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)	2. Study ac	ddition and mult	iplication theorem, moment generating function				
events – Mathematical, Statistical and Axiomatic definitions of Probability – Simple problems. Unit:2 Addition and Multiplication law of probability - Boole's inequality- Conditional probability – Bayes Theorem Simple problems - Random variable - Discrete and Continuous – Probability Mass function and Probability Dens Function – Bivariate random variables Unit:3 Expectation – Variance - Moments: Raw and central moments and their relations, Moment Generating Functions a Probability Generating Functions–Simple problems. Unit:4 Chebychev's inequality - Cauchy – Schwartz inequality – Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)	Unit:1						
Addition and Multiplication law of probability - Boole's inequality- Conditional probability - Bayes Theorem Simple problems - Random variable - Discrete and Continuous - Probability Mass function and Probability Dens Function - Bivariate random variables Unit:3 Expectation - Variance - Moments: Raw and central moments and their relations, Moment Generating Functions a Probability Generating Functions-Simple problems. Unit:4 Chebychev's inequality - Cauchy - Schwartz inequality - Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)		•	•		n evei	nts ar	nd types of
Simple problems - Random variable - Discrete and Continuous - Probability Mass function and Probability Dens Function - Bivariate random variables Unit:3 Expectation - Variance - Moments: Raw and central moments and their relations, Moment Generating Functions a Probability Generating Functions-Simple problems. Unit:4 Chebychev's inequality - Cauchy - Schwartz inequality - Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)	Unit:2						
Expectation – Variance - Moments: Raw and central moments and their relations, Moment Generating Functions at Probability Generating Functions–Simple problems. Unit:4 Chebychev's inequality - Cauchy – Schwartz inequality – Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)	Simple problems Function – Biva	s - Random vari	able - Discrete and Continuous - Probability Mass function	•		•	
Probability Generating Functions–Simple problems. Unit:4 Chebychev's inequality - Cauchy – Schwartz inequality – Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)							
Unit:4 Chebychev's inequality - Cauchy - Schwartz inequality - Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)	-			it Gene	erating	g Fun	ections and
Chebychev's inequality - Cauchy - Schwartz inequality - Definition of convergence in probability and distribution Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)		oracing randion	s simple prociems.				
Total Lecture Hours 60 Hours	Chebychev's ine		* *		lity ar	nd dis	stribution
Total Declare Hours 00 Hours			Total Lecture Ho	urs	60 Ho	urs	

- 1 Hogg, R.V., Mc Kean J W and Craig, A.T.(2005): Introduction to Mathematical Statistics, 6/e Pearson Edition
- 2 Gupta,S.C. and Kapoor, V.K. (2000): Fundamentals of Mathematical Statistics, 10/e, Sultan Chand and sons.

Reference Books

Mood, A.M., Graybill, F.A and Boes, D.C.(1974): Introduction to the Theory of Statistics, McGraw Hill.

Course Code	STAT 122	MATHEMATICS FOR STATISTICS -II	L	T	P	Credits
Core	MINOR 2	Semester II	4	1	-	4
Pre-requisite		Knowledge in Mathematics (higher secondary level)	Sylla Vers		202	3-24

Course Objectives

To learn the basic concepts of matrices, Linear Equations, partial differentiation, Gamma Integral and Laplace transform

Expected Course Outcomes

On completion of the course, students will be able to apply mathematical techniques for deriving statistical distributions.

Unit:1

Matrices: Elementary, scalar, Hermitian, skew-Hermitian, symmetric, skew-symmetric, Unitary, triangular, equivalent and similar matrices- Transpose and conjugate of a matrix – Rank of a matrix

Unit:2

System of Linear Equations- Consistency-Different types of solutions – Inverse of a Matrix. Characteristics Equation – Eigen values and Vectors – Cayley Hamilton Theorem.

Unit:3

Partial differentiation – Maxima and Minima of functions of two variables- Integration – Properties of Definite Integrals – Reduction formula – Bernoulli's formula - Double Integrals – Evaluation in simple cases only – Use of Jacobian transformation

Unit:4

Definitions of Beta and Gamma Integrals – Recurrence Formula for Gamma Integral Properties of Beta Integral – Application of Beta Gamma Integrals – Relation between Beta and Gamma Integrals. Laplace Transform: Introduction – definition – properties – Laplace transforms of standard functions – derivatives and integrals of transforms – transform of derivatives and integrals

Total Lecture Hours 60 Hours Books for Study 1 M.K. Venkataraman (1965): Engineering Mathematics, National Publishing Company, Chennai 2 T.K. Manicavachagom Pillay, T. Natarajan, K.S. Gnanapathy, Calculus, Vol I, II & III, S. Viswanathan Printers & Publishers Pvt.Ltd., Chennai

T.K. Manicavachagom Pillay, T. Natarajan, K.S. Gnanapathy (1999), Algebra, Volume II, S. Viswanathan Printers & Publishers Pvt.Ltd., Chennai

Reference Books

1 B.S. Grewal (2014): Higher Engineering Mathematics, Khanna Publishers

Course Code	STAT123	INTRODUCTION TO PROBABILITY THEORY	L	Т	P	Credits
Core	MD 2	Semester II	3	1	-	3
Pre-requisite		Knowledge in Mathematics (at higher secondary level)	Sylla Ver	abus sion	202:	3-24

Course Objectives:

This course will lay the foundation to probability theory and Statistical modelling of outcomes of real-life random experiments through various Statistical distributions.

Expected Course Outcomes:

The students will get to know about

- 1. Writing of sample space, events and algebra of events and finding Probability of events.
- 2. Conditional Probability and applications of Bayes' theorem.
- 3. Discrete and continuous random variables, probability mass function and probability density function cumulative distribution function.

Unit:1

Probability: Introduction, random experiments, sample space, events – Types of events - Definitions of Probability – classical, statistical and axiomatic - Conditional Probability - Addition and Multiplication theorem of probability - Bayes' theorem – Simple problems.

Unit:2

Random Variables: Discrete and continuous random variables, Probability mass function, Probability density function, Cumulative distribution function their properties. Expectation, variance, moments and moment generating function.

Unit:3

Discrete probability distributions: Binomial, Poisson, Geometric, Negative Binomial, Hyper geometric – properties and applications.

Unit:4

Continuous Probability distributions: Uniform, Normal, Exponential, Beta, Gamma - properties and applications

Total Lecture Hours 45 Hours

Books for Study

- 1 Goon, A.M., Gupta, M.K. and Dasgupta, B. (2013). Fundamental of Statistics, Vol I, , World Press, Kolkata.
- Mood, A.M. Graybill, F.A. and Boes, D.C. (2011). Introduction to the Theory of Statistics, 3rd Edn., (Indian Edition), Tata McGraw-Hill Pub. Co. Ltd.
- Rohatgi, V.K. and Saleh, A.E. (2008). An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.

- Goon, A.M., Gupta, M.K. and Das Gupta, B. (2016): Fundamentals of Statistics, Vol. II, World Press, Calcutta.
- Miller, I. and Miller, M. (2006). John E. Freund's Mathematical Statistics with Applications, (7th Edn.), Pearson Education, Asia.

Course Code	STAT124	DATA ANALYSIS USING EXCEL-II	L	T	P	Credits
Core	SEC 2	Semester II	3	1	-	3
Pre-requisite			Sylla Vers		202	3-24
Course Objec	tives:	•	•			
1. To trai		arse are: handle and present the date with various statistical skills of students using built in statistical from				
Expected Cou	rse Outcomes:					
	n basic problems	s on probability e random numbers and compute basic measures				
Unit:1 B	asic Probability	using Excel				
Addition and problems.	Multiplication la	aw of probability - Conditional probability - I	Bayes	Theo	rem	- Simpl
Unit:2 R	andom Numbe	r Generation using Excel				
	random numbers v and central mo	s for discrete and continuous random variables - ments	Expe	ctatio	n – V	ariance
Unit:3 R	elational Analy	sis using Excel				
exponential cu	urves. Correlati	n, fitting of straight line, Second-degree partion: Meaning, Types of Correlation, Measure ssociation of attributes.		-		
Unit:4 T	abulation Anal	ysis using Excel				
		nd basic calculations using Pivot Tables, Pivot contraction, inverse and transpose	harts -	- Mat	rix O	peration
Total Lecture	Hours			45	Hou	rs
Books for Stu	dy:			•		
		ics Made Simple: Do it Yourself on PC, PHI, In		/e	•	
2 Wayne, W	L (2019), Micro	osoft Excel: Data Analysis & Business Model, P	HI			

Nelson, S.L and Nelson, E C (2018), Microsoft data analysis for dummies, Wiley

Berk, K. N and Carey, P (2000), Data Analysis with Microsoft Excel, S.Chand (G/L) & Company

Reference Books:

Ltd, 3/e

<u>SECOND YEAR – SEMESTER III</u>

Course Code	STAT231	DISTRIBUTION THEORY	L	Т	P	Credits
Core	MAJOR 3	Semester III	4	1	-	4
Pre-requisite		Rasic Probability Theory	Syllal Versi		202	3-24

Course Objectives

The main objectives of this course are:

- 1. To learn the concepts of discrete and continuous distributions.
- 2. To learn about sampling distributions like Chi-Square, Student's t (Fisher's t) and Snedecor's F distributions and their applications.

Expected Course Outcomes

On the successful completion of the course, student will acquire:

- 1. Knowledge of important discrete distributions such as Binomial, Poisson, Geometric, Negative Binomial and Hyper-geometric and their interrelations (if any)
- 2. To apply standard discrete probability distribution to different situations.
- 3. Knowledge of important continuous distributions such as Uniform, Normal, Exponential, Beta and Gamma and relations with some other distributions and their applications.

Unit:1

Discrete Distributions: Bernoulli, Binomial - Poisson - Geometric — Uniform distributions - Definition, properties, characterizations and simple problems.

Unit:2

Negative Binomial - Multinomial - Hypergeometric distributions - Definition, properties, characterizations and simple problems.

Unit:3

Continuous Distributions: Uniform - Exponential - Normal - Cauchy - Gamma - Beta distributions (First and Second kind) - Definition, properties, characterizations and simple problems.

Unit:4

Definition of Sampling distributions and standard error - Sampling distributions: central t, central F and central chi-square distributions – derivation of pdf and their characteristics.

Total Lecture Hours 60 Hours

Books for Study:

- Hogg, R.V., Mc Kean J W and Craig, A.T.(2021): Introduction to Mathematical Statistics, 8/e Pearson Edition.
- 2 Mood, A.M., Graybill, F.A and Boes, D.C. (2017): Introduction to the Theory of Statistics, 3/e, McGraw Hill.
- Rohatgi, V.K. and Saleh, A.E. (2008). An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern.

- Goon, A.M., Gupta, M.K. and Das Gupta, B. (2016): Fundamentals of Statistics, Vol. II, World Press, Calcutta.
- 2 | Irwin Miller and Marlyees Miller (2013): John E Freund's Mathematical Statistics, 8/e, PHI.

Course Code	STAT232	APPLIED STATISTICS	L	Т	P	Credits
Core	MAJOR 4	Semester III	4	1	-	4
Pre-requisite		Rasic Statistics	Sylla Versi		202	3-24

Course Objectives:

The main objectives of this course are:

- 1. To learn the concepts of time series, evaluation, measurement of trend and seasonal variations by various methods.
- 2. To learn about Index numbers.
- 3. To learn about the various measures of mortality and fertility.

Expected Course Outcomes:

On the successful completion of the course, student will acquire:

Students will gain the knowledge about Analysis of time series, index numbers and vital statistics.

Unit:1

Index Numbers: Construction of index numbers; fixed and chain base index numbers; weighted index numbers; standard index numbers; Tests for index numbers; cost of living index number and its construction.

Unit:2

Time Series Analysis: Components of a time series – methods for measurement of trend and Seasonal variations – moving average, ratio to trend, ratio to moving average, exponential smoothing

Unit:3

Vital Statistics: Methods of obtaining Vital Statistics, Methods of measuring population - Measures of mortality - Crude and specific rates, standardized rates, Infant mortality rate - Complete life table - its construction and uses. Abridged life tables.

Unit:4

Measures of Fertility: Crude Birth Rate (CBR), Age Specific Fertility Rate (ASFR), General Fertility Rate (GFR) and Total Fertility Rate (TFR) - Crude, Specific and standardized rates - Measures of migration, Population growth rates - Gross Reproduction Rate and Net Reproduction Rate.

Total Lecture Hours 60 Hours

Books for Study

- 1 Kapoor.V.K. and Gupta.S. (2014): Fundamentals of Applied Statistics, Sultan Chand and Sons.
- 2 Parimal Mukhopadhyay (2022): Applied Statistics, Books and Allied (P) Ltd, Kolkata.
- 3 B L Agarwal (2013): Basic Statistics, New Age International Publishers.

- 1 Goon.A.M., Gupta.M.K. and Das Gupta .B (2016): Fundamental of Statistics, Vol. II, World Press, Calcutta.
- 2 Bogue.D.J. (1969): Principles of Demography, John Wiley.
- Misra.B.D. (1982): An Introduction to the Study of Population, South Asian Publishing.

Course Code	STAT 233	REAL ANALYSIS	\mathbf{L}	T	P	Credits
Core	MINOR 3	Semester III	4	1	-	4
Pre-requisite		Knowledge in Mathematics (higher secondary level)	-	abus sion	202	3-24
Course Objec	tives		1			
integration.		convergence and divergence, functions, algebra of	Tunc	HOHS &	uiu i	Xieiliann
	rse Outcomes					
On the success	ful completion of	of the course, student will be able to:				
Students will l	earn the mathem	natical concepts pertaining to sequences and series	5,			
functions, its d	erivative and in	tegration.				
Unit:1						
Real valued fu	ınctions – Equi	valence - Countability - Real numbers - Least 1	upper	boun	d –	Greatest
lower bound.	Sequence of re	eal numbers: Limit of a sequence - Convergen	t sequ	uence	s, D	ivergent
sequences - B	ounded sequenc	es - Monotone sequences - Cauchy's first and se	econd	theor	em (on limits
- Cauchy's gen	neral principle o	f convergence				
Unit:2						
Series of real	numbers : Conv	ergence and divergence - series with non-negati	ive te	erms –	cor	nparison
test - p-test, D	'Alembert's rati	o test, Cauchy's Root test - Alternating series - C	Condit	ional	con	vergence
and absolute	convergence – L	eibnitz test (proof of the test can be omitted, only	prob	lems)		
	-			· ·		

Unit:3

Functions: Limit of real valued function in one variable, continuity – types of discontinuities – algebra of continuous functions – Extreme value theorem – Intermediate value theorem – Uniformly Continuous functions - Increasing and Decreasing functions - Differentiability - Darboux's Theorm - Rolle's Theorem – Mean value theorem for derivatives – Taylor's Series expansion

Unit:4

Riemann Integration – Definition and existence of the integral – refinement of partitions – Darboux's theorem - Conditions of Integrability - Integrability of sum and modulus of integrable functions -Integration and Differentiation – Fundamental Theorem of Calculus

Total Lecture Hours 60 Hours

Books for Study

- Malik S.C. and Savita Arora (2010): Mathematical Analysis, 4/e, New Age International Publishers
- D. Somasundaram and B. Choudhary (2002): A first course in Mathematical Analysis, Narosa Publishing house
- R. R. Goldberg (1970): Methods of Real Analysis, Oxford & IBH.

- T. M. Apostol(1985): Mathematical Analysis, Narosa Publishing House.
- W. Rudin(1976): Principles of Mathematical Analysis, 3/e, McGraw Hill Company.

Course Code	STAT 234	STATISTICAL METHODS	L	T	P	Credits
Core	MD 3	Semester III	3	1	-	3
Pre-requisite	•		Syllabu Versior		/11/3-/4	
Course Object	ives:		•			
	tives of this cou					
To focus attenti	on on various st	atistical methods and to apply them for basic data a	nalysis			
Expected Cour	rse Outcomes:					
On the successf	ful completion o	f the course, student will have				
Knowledge of 1	ndex numbers,	Γime Series, Vital Statistics, Official Statistics				
Unit:1						
Index Numb	ers: Construct	ion of index numbers; fixed and chain base ind	dex numb	ers; v	veigl	nted inde
numbers; star	ndard index n	umbers; Tests for index numbers; cost of l	iving ind	ex n	ımbe	er and it
construction.						
Unit:2						
Vital Statisti	cs: Methods of	f obtaining Vital Statistics, Methods of measur	ing popul	ation	- M	easures c
mortality - Cı	rude and speci-	fic rates, standardized rates, Infant mortality ra	ate - Con	plete	life	table - it
construction a	nd uses. Abrid	ged life tables.				
Unit:3						
	1			1	T'	
		ponents of a time series – methods for measurer	ment of tr	ena –	· Fitti	ing of
	and exponer	ntial trend – Method of moving averages				
Unit:4	• 11: 4 CT	1' C'.' 1C . D T 1' C'.' 1C	1 , 0		1	
		ndian Statistical System - Present Indian Statistical Sow chart of Indian Statistical System – Ministry				
		ntral Statistical Office (CSO) – National Sample Su				
Total Lecture		ina stansiem office (e.g.o) Transilai sample su	ivey Organ		Hou	
Books for Stud	•			7		
		and Purves, R. (2014). Statistics. 4 th Edition. N		omp	•	
		1 Methods an Introductory Text, Wiley Eastern Ltd		Conc		
		(1978): Fundamentals of Applied Statistics, Sultan C	Jiana ana	SOIIS.		
Reference Boo		1 W/11: A (2002) G(-: -: -: -: -: -: -: -: -: -: -: -: -:	•	0/ 55		
1 Anderson.I	k, Sweeney.J and	d Williams.A (2002): Statistics for Business and Ed	conomics,	8/e, T	noms	son.

Murray R. Spiegel and Larry J. Stephens (2005): Schaum's Outline of Theory and Problems of Statistics, 3/e, Tata Mc Graw Hill Publishing Company Ltd, New Delhi.

Sheldon M.Ross (2006): Introductory Statistics, 2/e, Elsevier Publications.

Core SEC 3 Semester III 3 1 - 3 Pre-requisite Knowledge in Basic Statistics Syllabus Version 2023-24	Course Code	STAT 235	EXPLORATORY DATA ANALYSIS USING R	L	T	P	Credits
Pre-requisite Knowledge in Basic Statistics 71173-74	Core	SEC 3	Semester III	3	1	-	3
	Pre-requisite		Knowledge in Basic Statistics				2023-24

Course Objectives

This course is intended to train students to get knowledge in performing statistical data analysis using R language

Expected Course Outcomes

Students will be able to write program in R language for a various data analytic technique which will help them in getting placed in analytic companies.

Unit:1

R language Essentials: Expressions and objects, Assignments, creating vectors, vectorized arithmetic, creating matrices, operations on matrices, lists, data frames – creation, indexing, sorting and conditional selection; examples

Unit:2

Descriptive Statistics and Graphics: Obtaining summary statistics; generating tables; Bar plots, Pie charts, Box plots, Histogram; exercises - Graphic libraries in R like GGally, RGL, ggplot2; curve fitting, performance analytics package

Unit:3

Working with Text Data: Fundamental of Text data analysis - Basic Character functions: nchar, grep, sub and gsub functions, strsplit functions - Regular expression basics and functions -

Unit:4

Detection of anomalies in the Data: Outliers and their Influence – Detecting univariate outliers – Inliers and detection – Metadata errors – Mosaic plots: Categorical scatter plots – Missing data and its Imputation

Total Lecture Hours | 45 Hours

Books for Study

- 1 Tukey, J; EDA; Book on R with examples
- 2 | Ronald K Pearson (2018): Exploratory Data Analysis using R, CRC Press

- 1 | Jared P Lander (2014): R for Everyone: Advanced Analytics and Graphics, Pearson Education Inc.
- 2 Navarro OT (2017); R programming by Example, Packt Publishing.
- 3 Wickham H and Grolemund G (2017): R for Data Science.

SECOND YEAR - SEMESTER IV

			SECOND YEAR – SEMESTER IV				
Cour	rse Code	STAT241	SAMPLING THEORY	L	Т	P	Credits
Core		Major 5	Semester IV	4	1	-	4
Duo n	agnicita	-	Knowledge in Elements of Probability Theory and	Sylla	abus	2023	2 24
	equisite		Probability Distributions	Vers	sion	202,)- 44
	se Objecti						
		ives of this cour					
	•		lation and Sample survey and Census adom sample in different scenario with various sampling	a techi	niane		
			mean and variance).	g teem	inque		
		se Outcomes					
			the course, student will be able to:				
1	Understar	nd the concepts a	and importance of properties of estimators				
2			tor for a given parametric function				
3			ds of point estimation				
4	•		ymptotic behaviour of estimators				
			* *				
5		confidence inter	rvals for population parameters		1		
Unit:							
			n and sample – sampling unit and sample frame – Ty				
		_	e survey and census – Principal steps in a Sample surve	y – No	otion (ot sar	npling and
	ampling er	rors.			1		
Unit:		Compline with	and without replacement – Estimation of Population me	00 000	l Duon	ontio	n and thain
_		mination of sam		an anc	ггор	orno	n and then
Unit:		illination of sain	ipie size.				
		ing – Principles	of stratification – Estimation of population mean and	d its v	arian	ce –	Allocation
	_		nal and Neyman – Estimation of gain due to stratification		arran		mocanon
Unit:	• •	, r - r					
Linea	r and Circ	ular systematic s	sampling – Estimation of population mean and variance	e, Equ	al Clu	ıster	Sampling-
			and variance, Comparison of cluster and random	_			
syster	natic, simp	ole random and s	tratified				
Unit:	5						
			on: Use of random numbers and Simple random sampling				
sampl	ling – Prop	ortional allocation	on and Optimum allocation - Systematic sampling - Clu			_	
			Total Lecture 1	Hours	60	Hou	rs .
	s for Stud						
			pling Techniques, 3/e, Wiley.				
	•	•	F.S. (1986): Theory and Analysis of Sample Survey	and	Desig	ns,	New Age
	nternationa						
			opulation Sampling, South Asian Publishers				
	ence Book						
			ey theory, Narosa Publishing House.				
2 P	arımal Mu	khopadhyay(200	99): Theory of Sample Surveys, Prentice Hall of India				

Cou	rse Code	STAT242	ESTIMATION THEORY	L	T	P	Credits
Core		MAJOR 6	Semester IV	4	1	-	4
Pre-	equisite		I K nowledge in Propanility and Distribilition Theory I	Sylla Vers		202	3-24
Cour	se Objecti	ves				•	
			l interval estimation techniques.				
		se Outcomes					
On th	e successfu	al completion of	the course, student will be able to:				
1	Summariz	te the various di	mensions of quality and quality improvement methods				
2	Obtain the	e optimal estima	tor for a given parametric function				
3	Study the	different method	ds of point estimation				
4			ymptotic behavior of estimators				
5			rvals for population parameters				
Unit		Communice inter	vals for population parameters				
		of statistical Infe	erence: Point estimation - Properties of estimators: Unbiase	dnac	c and	con	cictones
	•		ficiency -Factorization theorem (without proof) –Simple pro			COIL	sistency -
Unit		onsistency but	merency i actorization theorem (without proof). Simple pro	701011			
		imum Variance	Unbiased Estimators (MVUE) and their properties - Cramer	r-Ra	o Inec	nuali	tv - Rao -
	•	rem – Simple Pr				1	- 5
Unit							
Meth	ods of Esti	mation: Method	s of moments – Simple problems - Method of least squares	s - N	letho	d of	minimum
chi-s	quare; Met	hod of maximu	m likelihood estimation (MLE) - Properties of maximum	like	lihoo	d est	imators -
		perties of MLE (without proof)				
Unit							
			ons - Confidence Intervals for the mean, proportion, variance	e (for	the c	ase c	of one and
	_) - Large sample	Confidence Intervals				
Unit		. 1 11	Mail CM - Mail CM - 17 17 1 C	1 ("	1	T .	1
Illust	rative Num	erical problems:	Method of Moments - Method of Maximum Likelihood - C Total Lecture Ho			Hou	
			Total Lecture Ho	ours	00	пои	rs
	s for Stud	,	1G : A T (2005) I		(T 11.1
		•	and Craig, A.T.(2005): Introduction to Mathematical Statist				n Edition
			K.(2002): An Introduction to Probability and Statistics, 2/e,		Wile	y.	
	лооа,А.М. ЛсGraw Hi	•	and Boes, D.C. (2011): Introduction to theory of Statistics ,				
	rence Book						
			Sudha Arora (2006): Introducing Probability and Statistic	ns 2	/e Sa	tva I	Prakachan
	-	s, New Delhi	Sudna 7 Hora (2000). Introducing Probability and Statistic	Jo, 4/	c, sa	ıya I	ranasiidii
			2): Mathematical Statistics, 8/e, Pearson Education.				
			nd Das Gupta,B. (2016): An Outline of statistical theory,	. Vo	l. II	Wo	rld Press
~ <u>}</u>	7 1 44	., <i></i> ,	(2010). The outline of building if	, , ,	 ,		,

Calcutta.

Course Code	STAT243	OFFICIAL STATISTICS	L	Т	P	Credits
Core	MAJOR 7	Semester IV	4	1	-	4
Pre-requisite				llabus ersion	707.3-	
Course Objectiv	ves				- 1	
To learn about I	ndian Statistical System	n				
Expected Cours	se Outcomes					
Students will get	t the awareness about t	he Indian Statistical System, Indian Admini	strative	System i	n Cei	ntral and
States. Student v	vill obtain the awarene	ss about Subordinate Service and Indian Sta	tistical	Service.		
Unit:1						
Indian Statistical	l System: History of In	dian Statistical System - Present Indian Sta	tistical	System –	Statis	stical system
at the Central a	nd State levels. Flow	chart of Indian Statistical System - Min	istry of	Statistics	s and	Programme
Implimentation ((MOSPI) – Central Sta	tistical Office (CSO) - National Sample Su	rvey Of	fice (NSS	SO)	
Unit:2						
Administrative S	Statistical System: Cen	tralised and Decentralised Systems of Collection	ction of	Adminis	trativ	e Statistics –
		stem – Weak Lateral Coordination. Nation				
- Functions of	the NCS – Constitution	on of NCS - National Statistical Organisa	tion (N	SO) – Fi	unctio	ons of NSO.
National Sample	Survey Office (NSSC) & its Divisions.				
Unit:3						
The States Stati	stical System: Improv	ring the Administrative Statistical System	(AdSS) – Statis	stics	for Decision
Making – Opera	tional Aspects – Comp	outerisation of Administrative Statistics.				
Directorate of E	conomics and Statistic	s (DES): Role of DES – Common Statistic	al Cadr	e – Statis	stical	Divisions in
Departments – E	Block Statistical Organi	isation.				
Unit:4						
Human Resourc	e Development: Staffi	ng Pattern at the Centre. Training Aspects	- Trair	ning Cou	rses (Organised by
the National Sar	nple Survey Organizat	tion - Training arrangements at State Statis	stical O	rganisatio	ons –	Subordinate
Staff – Indian St	atistical Service (ISS).					

e-publication of MOSPI https://mospi.gov.in/documents/213904/0/Ch+14+30.8.2001.pdf/

Saluja, M.R., (1972), 'Indian Official Statistical Systems', Statistical Pub. Society.

Government of India (1999), 'Guide to Official Statistics', CSO, MOSPI.

Books for Study

Reference Books

Total Lecture Hours

60 Hours

Course Code	STAT244	NUMERICAL METHODS	L	T	P	Credits
Core	MINOR 4	Semester III	4	1	-	4
Pre-requisite		Knowledge on Basics of Calculus	Sylla		202	3-24
11c requisite		(at plus 2 level)	Vers	sion	_02	<i>J</i> 4 7

Course Objectives

To learn the solution of Algebraic and transcendental equations, Finite differences, interpolation techniques

Expected Course Outcomes

On the successful completion of the course, student will be able to:

Students will gain sufficient knowledge in using interpolation techniques for finding roots of polynomial equations and evaluating integrals of functions.

Unit:1

Solution of Algebraic and Transcendental Equations: Bisection method – Regula Falsi method – Iteration method - Newton Raphson method – Horner's Method Simultaneous equations: Direct methods; Gauss Elimination method – Gauss-Jordan method – Iterative methods: Gauss-Jacobi method - Gauss Siedal iterative method.

Unit:2

Finite differences: Forward and backward differences – Differences of a polynomial – Relation between the Operators E, D, δ , μ and backward difference operator, and their basic properties – Application to summation of series.

Unit:3

Interpolation with equal intervals: Newton's forward and backward differences formulae. Central differences: Gauss's forward and backward differences formulae – Stirling's, Bessel's and Laplace-Everett's formula – Simple problems only.

Interpolation with unequal intervals: Divided differences and their properties – Newton's divided difference formula – Lagrange's formula – simple problems only.

Unit:4

Inverse interpolation: Iteration or successive approximation method — Lagrange's method — simple problems. Numerical Integration: Trapezoidal rule — Simpson's 1/3 and 3/8 rules — Weddle's rule — Euler's summation formula.

Total Lecture Hours 60 Hours

Books for Study

- 1 | S.S.Sastry (1998): Introductory Methods of Numerical Analysis, Prentice Hall of India.
- 2 B. S. Grewal (1997): Numerical Methods in Engineering and Science, Khanna Publishers, India
- M. K. Venkatraman (1999): Numerical Methods in Engineering and Science, 5/e, National Publishing company, India.

Reference Books

1 | Scarborough B (2005): Numerical Mathematical Analysis, Oxford University Press.

THIRD YEAR – SEMESTER V

Course Code	STAT351	TESTING STATISTICAL HYPOTHESES	L	T	P	Credits
Core	MAJOR 8	Semester V	4	1	-	4
Pre-requisite		Theory of Estimation and Distribution Theory	Sylla Vers	abus sion	2023	3-24

Course Objectives: The main objectives of this course are:

- 1. To learn the concepts of hypotheses, Type I and Type II errors, and power of a test
- 2. To understand the working principle of Neyman-Pearson lemma and likelihood ratio test
- 3. To Formulate parametric testing problems and deriving appropriate test statistic
- 4. To impart knowledge on large, small sample tests based on single and two populations
- 5. To understand the philosophy of non-parametric test procedures.

Expected Course Outcomes: On the successful completion of the course, student will be able to:

- 1. Compute error probabilities, size and power of test and depict the power curve.
- 2. Apply Neyman-Pearson lemma to find most powerful critical region for various parametric models.
- 3. Use likelihood ratio test principle to derive test statistics for parametric testing problems.
- 4. Provide decision rules for testing hypothesis related to single and two populations.
- 5. Derive test statistic for non-parametric test.

Unit:1

Concept of hypothesis testing- Types of errors and power – computing error probabilities, and power – notion of most powerful tests – Statement and proof (sufficient part) of Neyman-Pearson fundamental Lemma for testing simple hypotheses on continuous distributions – Examples of Neyman-Pearson lemma to find most powerful critical region for various probability distributions.

Unit:2

Likelihood Ratio (LR) tests - Description and property of LR tests - Application to testing the mean and variance of normal distribution – testing the equality of means and variances of two independent normal distributions - small sample properties – asymptotic properties (statement only).

Unit:3

Test for single mean and variance for small and large samples – Test for specified proportion - Test for equality of means and variances of two independent populations (large and small samples) – Test for equality of proportions. Chi-square test for goodness of fit and test for independence of attributes.

Unit:4

Non-Parametric Tests - Sign test, Wilcoxon signed rank test, Median test, Mann-Whitney test, Run test, one sample Kolmogorov –Smirnov test, Chi-square test for goodness of fit (Description, properties and applications only).

Unit:5

Illustrative numerical problems on : Parametric tests -z test, t test, chi-square test - Non-Parametric Tests - Sign test, Wilcoxon signed rank test, one sample Kolmogorov -Smirnov test

Total Lecture Hours 60 Hours

Books for Study:

- 1 Rohatgi, V.K. and Saleh, A.K. (2002): An Introduction to Probability and Statistics, 2/e, John Wiley.
- 2 Hogg, R.V., Mc Kean J W and Craig, A.T.(2005): Introduction to Mathematical Statistics, 6/e Pearson Edition.
- 3 Manoj Kumar Srivastava and Namita Srivastava (2009): Statistical Inference Testing of Hypotheses, Prentice Hall of India.

- Bansilal, Sanjay Arora and Sudha Arora (2006): Introducing Probability and Statistics, 2/e, Satya Prakashan Publications, New Delhi.
- 2 | Gupta, S.C. and V.K. Kapoor (2000): Fundamentals of Mathematical Statistics, Sultan Chand and Co.
- 3 Mood, A.M., Graybill, A.M. and Boes, D.C.(1974): Introduction to Theory of Statistics, Mc Graw Hill.

Course Code	STAT352	DEMOGRAPHY	L	Т	P	Credits
Core	MAJOR 9	Semester IV	4	1	-	4
Pre-requisite			Sylla Versi		202	3-24

Course Objectives:

The main objectives of this course are to provide basics of demography and official statistics

Expected Course Outcomes:

On the successful completion of the course, student will be able to construct life tables and measures of population dynamics.

Unit:1

History of Demography, Sources, significance and errors of demographic Data, Concepts and Definitions of terms; Population census of India and Dependency Ratio; Migration; Measures of Age and Sex Composition of the Population. Rates and Ratios, Crude and Specific Rates, Standardization – Direct and Indirect Methods.

Unit:2

Introduction, Concepts, Types of Analysis: Period and Cohort Measures - Crude and Specific Rates, Standardized Rates, different Fertility Rates, Gross Reproduction Rates, Net Reproduction Rate, Replacement Index.

Unit:3

Models for population growth and their fitting to population data. – Linear, exponential, logarithmic, modified Logarithmic, logistic and gompertz.

Unit:4

Introduction, Sources and Quality of Nuptiality Data, General, Specific, Total and Standardized Marriage rates, Mean Age at Marriage, Measures of Migration: Concept of mobility and migration, sources of data, types of migration, Internal & international migrations; measures of internal migration.

Total Lecture Hours 60 Hours

Books for Study:

- 1 K. Srinivasan (2011): Training Manual on Demographic Techniques, United Nations Population Fund, Institute for Social and Economic Change, Bangalore.
- 2 Srinivasan, K. (1997): Basic demographic techniques and applications, New Delhi: SAGE.
- Pathak, K.B. and F.Ram, (1998): Techniques of Demographic Analysis, Himalaya Publishing House, Mumbai.

- 1 Bhende, Asha and Tara Kanitkar (1992), Principles of Population Studies 5th Nov. ed. New Delhi, Himalaya.
- 2 Shryock, Henry S. Jacob S. Siegel and Associate (1980): The Methods and Materials of Demography Vol.1 & 2, U.S. Bureau of the Census, Washington D.C.
- Preston, Samuel H, Patrick Heuveline and Michel Guillot (2000): Demography –Measuring and Modeling Population Processes.

Course Code	STAT353	STATISTICS USING R	L	T	P	Credits
Core	MAJOR 10	Semester V	4	1	-	4
Pre-requisite			Syllal Versi		202	3-24

Course Objectives:

The main objectives of this course are:

- 1. To Impart training in R programming, create different types of R objects and perform operations
- 2. To detail the construction of plots, various discrete and continuous probability distributions
- 5. To impart skills in analyzing univariate and bivariate data.

Expected Course Outcomes:

On the successful completion of the course, student will be able:

- 1. To Impart training in R programming.
- 2. To create different types of R objects and perform operations, construction of plots.
- 3. To work on various discrete and continuous probability distributions.

Unit:1

R language Essentials: Expressions and objects - creating vectors - vectorized arithmetic -creating matrices - operations on matrices - lists - data frames - creation, indexing, sorting and conditional selection - importing and exporting data files.

Unit:2

Data Visualization and Descriptive Statistics: generating tables - Bar plots - Pie chart - Box plot - Histogram - Scatter plot - line plots (single, multiple) - partitioning graphics window - adding title, labels and legends to plots - obtaining measures of central tendency, measures of location and moment based measures.

Unit:3

Probability and Distributions: sampling with and without replacement and computing combinatory - obtaining density, cumulative density and quantile values for discrete and continuous distributions - generating samples from discrete and continuous distributions - Plotting density and cumulative density curves - Q-Q plot.

Unit:4

Analyzing univariate and bivariate data: Correlation analysis - Pearson, Spearman and Kendall measures; Testing hypothesis: one and two sample tests for mean and variance, , test of significance for correlation coefficient; Regression analysis – fitting, obtaining residuals and fitted values of simple linear regression model;. Chi Square test for goodness of fit and Independence of attributes.

Total Lecture Hours 60 Hours

Books for Study:

- 1 Pierre-Andre Cornillon et al. (2012): R for Statistics, CRC Press.
- 2 Randall E. Schumacker (2014): Learning Statistics using R, SAGE Publications, Inc.
- Purohit, Sudha G., Gore, Sharad D. and Deshmukh, Shailaja R. (2008): Statistics using R, Alpha Science International Limited.

- 1 Jared P Lander (2014): R for Everyone: Advanced Analytics and Graphics, Pearson Education Inc.
- 2 Michael J.Crawley (2007): The R Book, John Wiley and Sons Ltd.
- 3 Peter Dalgaard (2008): Introductory Statistics with R, 2nd edition, Springer.

Course Code	STAT 354	OPERATIONS RESEARCH	L	T	P	Credits
Core	MINOR 5	Semester V	4	1	-	4
Pre-requisite	,	Knowledge in Mathematics (higher secondary level)	Sylla Vers	abus sion	202	3-24
Course Object	tives					
analysis		and optimization techniques. To learn about gan	ne th	eory	and	network
Expected Cou						
	•	f the course, student will be able to:				
		allocate resources in an optimal manner and also	plar	the		
time-line of pro	ojects					
Unit:1						
	•	earch - Various Models in O.R Scope and limit				
-		Linear Programming Problem (LPP) -Formulati		-		
C I DD C'	olex method – Big	g M-method and Two Phase method - Concepts of	f Dua	ality –	- Co	nvarcion
-	-					11101151011
of LPP – Simp of Primal to Du	-					nversion
of Primal to Di	-					
of Primal to Du Unit:2	ual – Problems	Basic Solution- North West Corner Rule, Least Co	ost M	ethod	and	
of Primal to Du Unit:2 Transportation	ual – Problems Problem- Initial	Basic Solution- North West Corner Rule, Least Co mal Solution by Modified Distribution Method (1				Vogel's
of Primal to Du Unit:2 Transportation	Problem- Initial of Method – Optin					Vogel's
of Primal to Du Unit:2 Transportation Approximation	Problem- Initial of Method – Optin					Vogel's
of Primal to Du Unit:2 Transportation Approximation problem - Simp Unit:3	Problem- Initial in Method — Opting ple Problems		MOI	OI) -	Ass	Vogel's signment
of Primal to Do Unit:2 Transportation Approximation problem - Simp Unit:3 Game Theory	Problems Problem- Initial Method – Opting ple Problems – Pure and Mixe	mal Solution by Modified Distribution Method (MOI	OI) -	Ass	Vogel's signment
of Primal to Do Unit:2 Transportation Approximation problem - Simp Unit:3 Game Theory	Problems Problem- Initial Method – Opting ple Problems – Pure and Mixe	ed strategies, saddle point - Dominance rule - Op	MOI	OI) -	Ass	Vogel's signment
of Primal to Do Unit:2 Transportation Approximation problem - Simp Unit:3 Game Theory person zero sur Unit:4	Problems Problem- Initial Method – Opting ple Problems – Pure and Mixem games – Graph	ed strategies, saddle point - Dominance rule - Opical solution of (2 x n) and (m x 2) games	MOI otima	OI) - l Sol	Ass	Vogel's signment
of Primal to Do Unit:2 Transportation Approximation problem - Simp Unit:3 Game Theory person zero sur Unit:4 Network analy	Problem- Initial in Method — Optingle Problems — Pure and Mixem games — Graph	ed strategies, saddle point - Dominance rule - Op	MOI otima	OI) - l Sol	Ass	Vogel's signment

Kanti Swarup, P.K. Gupta and Manmohan (2010): Operation Research, Sultan Chand and Sons.

Hillier F.S. and Libermann G.J. (2004): Introduction to Operations Research, 7thEdition, McGraw

S.D. Sharma (2003): Operations Research, Kedarnath Ramnath and Co. Taha H.A. (2008): Operational Research: An Introduction,8/e, Pearson.

Reference Books

Hill

Course Code	STAT 355	INTERNSHIP	L	Т	P	Credits
Core	MAJOR 11	Semester V		2	3	4

Syllabus Version: 2023-24

Course Objectives

A course requiring students to participate in professional employment related activity or work experience, or cooperative education activity with an entity external to the education institution, normally under the supervision of an employee of the given external entity.

Expected Course Outcomes

On the successful completion of the course, student will be able to:

Students will gain skilled knowledge to allocate resources in an optimal manner and also plan the time-line of projects

Course Code	STAT 361	PRINCIPLES OF EXPERIMENTAL DESIGN	L	Т	P	Credits
Core	MAJOR 12	Semester VI	4	1	-	4
Pre-requisite		Knowledge in Distribution Theory and Statistical Inference	Sylla Vers		2023	3-24
Course Object	ives					
The main object	tives of this course a	are to:				
	• •	esign of statistical experiments and models.				
2. To learn abou	ıt basic designs CRl	D, RBD, LSD and factorial design with suital	ble real	-life e	examp	oles.
Expected Cour						
On the successf	ul completion of the	e course, student will be able				
1 To carry out o	one way and two-wa	y Analysis of Variance (ANOVA)				
2 To understand	the basic terms use	ed in design of experiments				
3 To use approp	oriate experimental of	designs to analyze the experimental data				
4 To apply Mul	tiple range tests, the	LSD test or the multiple t-test, Student-New	vman-K	Ceuls	test, I	Duncan's
multiple range t	est, Tukey's test, M	ultiple F tests, Fisher's least significant diffe	rence to	est		
5 To analyze 2 ²	and 2 ³ factorial exp	periments and give statistical interpretation of	f the ex	perim	ental	results
Unit:1						
Analysis of var	iance: Definition, a	ssumption for ANOVA test, one-way and t	two-wa	y clas	ssifica	ations for fixe
		n per cell. Introduction to design of experi-				
		ks, experimental error, replication, precision	and ac	curac	y, nee	ed for design
Unit:2	e and shape of plots	and blocks.		1		
	inciales of design	of americants. Dondonization Daulication	I T	1		ol Commisso
		of experiments: Randomization, Replication mized Complete Block Design (RCBD), Lati				
layout and analy	_	ilized Complete Block Design (RCDD), Lat.	m squa	ic de	sigii (LSD) and the
	,					
Unit:3	chnique for RCRD	and LSD, missing plot techniques for one	obser	vatior	n per	cell in RCBI
	chilique for RCDD					
Missing plot te		Significant Difference (LSD), Tukey's test	t, Dunc	an s	111416	ipic ixange ic
Missing plot te Multiple Comp (DMRT), Stude		Significant Difference (LSD), Tukey's test	t, Dunc	all 5	TVICITO	ipic Range te
Missing plot te Multiple Comp (DMRT), Stude Unit:4	arison tests: Least nt Newman Keul Te	Significant Difference (LSD), Tukey's test est (SNK)				
Missing plot te Multiple Comp (DMRT), Stude Unit:4 Factorial Exper	arison tests: Least nt Newman Keul To iments: 2 ² , 2 ³ desi	Significant Difference (LSD), Tukey's test				
Missing plot te Multiple Comp (DMRT), Stude Unit:4 Factorial Exper Analysis of 2 ² ,	arison tests: Least nt Newman Keul To iments: 2 ² , 2 ³ desi	Significant Difference (LSD), Tukey's test est (SNK)				
Missing plot te Multiple Comp (DMRT), Stude Unit:4 Factorial Exper Analysis of 2 ² , 2 Unit:5	arison tests: Least nt Newman Keul To iments: 2 ² , 2 ³ desi 2 ³ designs	Significant Difference (LSD), Tukey's test est (SNK) gns -Estimation of main effects and interaction	ctions a	nd th	eir st	andard errors
Missing plot te Multiple Comp (DMRT), Stude Unit:4 Factorial Exper Analysis of 2 ² , 2 Unit:5 Illustrative nur	arison tests: Least nt Newman Keul To iments: 2 ² , 2 ³ designs merical problems of	Significant Difference (LSD), Tukey's test est (SNK)	ctions a	nd th	eir st	andard errors

Das, M.N. and Giri.N.C. (1986): Design and Analysis of Experiments, Wiley eastern.

Gupta .S.C. and Kapoor.V.K.(2000): Fundamentals of Applied Statistics, Sultan Chand. ParimalMukhopadhyay(2005): Applied Statistics, 2/e, Books and Allied (P) Ltd, Kolkata.

Goon.A.M, Gupta and Dasgupta.B.(2001): An Outline of statistical Theory, Vol. II, 6/e World Press Calcutta.

Montgomery, C.D (2017): Design of Experiments, 9/e, John Wiley and Sons. Cochran .W.G. and Cox .G.M. (1995): Experimental designs, 4/e, Wiley.

Books for Study

Course Code	STAT362	ACTUARIAL STATISTICS		L	Т	P	Credits
Core	MAJOR 13	Semester	VI	4	1	-	4
Pre-requisite				Syllabus	Version		2023-24
Course Objecti	ives:						
1. modelling of	of individual and	aggregate losses.					
	of-loss reinsurar	ice.	deductibles and	retention		5,	proportional
		gate claims, compound dist					
		n the successful completion			able to:		
1. handling problems on joint life and last survivor status and multiple decrement model							
2. calculation of various payments from life tables using principle of equivalence, net premiums, prospective and retrospective provisions/reserves							
		epts mentioned above throu		ments.			
Unit:1		1					
	lels and Life Tab	les Loss distributions: mod	elling of individual a	nd aggreg	ate losses	moi	ments fitting
Probability Models and Life Tables, Loss distributions: modelling of individual and aggregate losses, moments, fitting distributions to claims data, deductibles and retention limits, proportional and excess-of-loss reinsurance. Risk models							
models for individual claims and their sums, Distribution of aggregate claims, Compound distributions and							
	roduction to cred			., .,	1		
Unit:2							
Survival function	on, curtate future	lifetime, force of mortality.	Multiple life function	ons, joint 1	ife and las	st sui	rvivor status.
Multiple decrement model. Life Contingencies: Principles of compound interest: Nominal and effective rates of							
interest and disc	count, force of in	terest and discount, compor	ınd interest, accumu	lation fact	or.		
Unit:3							
Assurance and annuity contracts: definitions of benefits and premiums, various types of assurances and annuities,							
present value, fo	ormulae for mear	and variance of various co	ontinuous and discre	te paymen	ts.		
Unit:4							
Calculation of	various payme	nts from life tables: prin	ciple of equivalence	ce, net pr	emiums,	pros	spective and
	ovisions/reserves	_	_	-			
Total Lecture Hours					60 Hours		
Books for Stud	v				<u> </u>		
	•	l and Probabilistic Methods	in Actuarial Science	e. Chapma	n and Hal	1/CF	RC.
		A. F. (2013). Financial and					
1	 _ '						

- 2 Borowaik, D.S. and Shapiro, A. F. (2013). Financial and Actuarial Statistics: An Introduction. 2nd Edition. Marcel Dekker Inc., New York-Basel.
- Bowers, N. L., Gerber H. U., Hickman, J. C., Jones, D. A. and Nesbitt, C. J. (1997). Actuarial Mathematics, 2nd Edition, Society of Actuaries, USA.

- 1 Deshmukh, S.R. (2005). Actuarial Statistics: In Introduction Using R. Narosa Publishing House, New Delhi
- Promislow, S. D. (2014). Fundamentals of Actuarial Mathematics. 3rd Edition. Wiley

Course Code	STAT363	INTRODUCTORY STATISTICS USING PYTHON	L	Т	P	Credits
Core	MAJOR 14	Semester VI	4	1	-	4
Pre-requisite			Sylla Vers		202	3-24
Course Objec						
 To learn a To learn v 		thon.				
		the course, student will be able to:				
		perform basic operations				
		rious codes and filters				
		ng means and variances				
	t and residual ana	_ -				
		ivariate techniques using various datasets				
	oduction to Pyth					
membership, i	-	ation – Basic Object types and Operators: Arith Structure: Selection and iteration – Lists – Tuje I/O operations				_
	a Handling Tools	-				
Pandas: Creati statistics – mer	ng series and Daging, join and gro	Py- creating NumPy array- indexing – slicing- ata frame – reading and writing from csv, text ouping – pivot tables			_	
	a Visualization T		4 - 1-1-	4		
37abelling – ba	_	lines on same axis and different axis, scatter plo stacked and multiple -Pie charts. Perspectives in ng data		_		
1		res and Model Fitting				
		t, F and Chi-square – construction of confidence ediction intervals	inter	vals -	- sim	ple linea
		Total Lecture H	ours	60 F	Iour	'S
Books for Stu	dy					
1 Manohar S	wamynathan (20	17), Mastering Machine Learning with Python in	Six S	Steps,	Apr	ress
2 Tom M. M	itchell (2017), N	Iachine Learning, Tata McGraw Hill				

William McKinney (2017), Python for Data Analysis: Data Wrangling with Pandas, NumPy, and

Reference Books

Ipython, O'Rilley

Course Code	STAT 364	STATISTICAL QUALITY CONTROL	L	T	P	Credits
Core	MAJOR 15	Semester VI	4	1	•	4
Pre-requisite		Knowledge in Elements of Probability Theory and Probability Distributions Version			2023-24	

Course Objectives

The main objectives of this course are to:

- 1. To Impart knowledge on the concepts of quality improvement and process control techniques
- 2. To make learners understand the working principle of control charts for variables and attributes
- 3. To detail the construction of control charts
- 4. To impart skills in drawing and analyzing control charts
- 5. To understand the operating procedure and analysis of acceptance sampling plans

Expected Course Outcomes

On the successful completion of the course, student will be able to apply quality control tools and techniques to observe the change in the process and product control.

Concept of quality of a product and quality improvement – Dimensions of quality – Statistical methods for quality control and improvement – acceptance sampling, process control and designed experiments – link between quality and productivity – Modelling variation – Stem and leaf plot, histogram and box plot

Unit:2

Unit:1

Statistical process control – chance and assignable causes of variations – seven magnificent tools of statistical process control – general theory of control charts – statistical basis of control charts – basic principles and choice of control limits – 3-Sigma control limits, warning limits and specification limits – OC function of control chart and average run length – sensitizing rules for control charts.

Unit:3

Control chart for variables $-\bar{X}$, R and S – chart – their construction and analysis – Control charts for attributes – p, np, c and u charts – their construction and analysis

Unit:4

Lot by lot acceptance sampling for attributes – acceptance-sampling problem – advantages and limitations – types of acceptance sampling plans – Single sampling plan, Double sampling plans – derivation and construction of OC – rectifying inspection plan – construction of AOQ, AOQL, ATI and ASN functions – notion of sequential sampling plan, Solve problems using Excel.

Unit:5

Illustrative numerical problems on : \bar{X} , R, p, c charts - Single sampling plan, Double sampling plans – OC function, AOQ, ATI and ASN

Total Lecture Hours | 60 Hours

Books for Study

- 1 Montgomery, C. Douglas (2019): Introduction to Statistical Quality Control, 8/e, John Wiley and Sons.
- 2 S.C.Gupta and V.K.Kapoor (2014), Fundamentals of Applied Statistics, Sultan Chand and Sons.

Reference Books

- 1 Duncan, A.J. (1986). Quality Control and Industrial Statistics, 5th Edition, Irwin
- 2 Grant.E.L. and Leavenworth.R.S. (2017), Statistical Quality Control, 7/e, McGraw Hill.

Course Code	STAT365	BASIC ECONOMETRICS	L	T	P	Credits
Core	MINOR 6	Semester VI	4	1	-	4
Pre-requisite			Sylla Ver		2023	3-24
Course Objectiv	es		•			
	epts in Econometric	es				
Expected Course						
On the successful	completion of the	course, student will be able to deal with various con	nsequen	ces ar	d iss	ues that
arise in economet	tric models.					
Unit:1						
Nature and Scop	e of Econometrics	- Review of General Linear Model (GLM), Ord	linary L	east S	Squar	es (OLS)
Generalized Leas	t Squares (GLS) an	d Multicollinearity – Sources, consequences and de	etection			
Unit:2						
Heteroscedasticit	y - consequences ar	nd detection: Graphical methods – Tests: Park test	– Glejse	r's tes	st – S	pearman's
rank Correlation t	est – Goldfeld-Qua	ndt test - Breusch-Godfrey-Godfrey test and White	's Gener	al He	teros	cedasticity
test - remedial m	easures for Heteros	cedasticity – Weighted Least Squares approach				
Unit:3						
Autocorrelation -	- consequences and	tests: Run's test –Durbin-Watson test Autoregr	essive li	near 1	egres	sion -
Distributed lag m	odels - Finite and I	nfinite Distributed lag models - Koyck's approach	, Almon	s' Mo	del,	Cagan's
approach, Arithm	etic Lag, Geometric	c Lag model				
Unit:4						
Simultaneous line	ear equations model	- Identification problem - Restrictions on structura	l param	eters -	rank	and orde
conditions - Restr	rictions on variance	s and covariances - Estimation in simultaneous equ	ations n	nodel		
		Total Lecture	e Hours	60	Hou	rs
Books for Study						
•		and Manoranjan Paul (2019): Basic Econometrics,	5/e, Mc(Graw	Hill.	
		e methods, Third edition, McGraw Hill.	,	• • • •		

Reference Books

Apte, P.G. (1990): Text book of Econometrics. Tata McGraw Hill.

Kleiber, C. and Zeileis, A. (2008): Applied Econometrics with R, Springer, NY.

2 Intrulligator, M.D. (1980): Econometric models - Techniques and Applications, Prentice Hall of India.

		FOURTH YEAR – SEMESTER VII				
Course Code	STAT471	ADVANCED PROBABILITY THEORY	L	Т	P	Credits
Core	MAJOR 16	Semester VII	4	1	-	4
Pre-requisite		Basic Probability Theory	_	abus sion	2023	-24
Course Object	tives		•			
The objective for communicate the		to learn the theory and methods of probability	theor	y, and	be abl	e to apply and
Expected Cou	rse Outcomes					
_	in probability, fo	ts will also be able to formulate and apply to prmulate scientific problems involving randomne				-
Unit:1						
Distribution fundaments: Unit:2 Expectation and Markov Inequal: Unit:3 Convergence of	moments – definities – Characteria a sequence of ra	polity space - Random variables and Random vectoristion of distribution functions. Initions and simple properties – Moment inequalistic function – definition and properties – Inverse andom variables - convergence in distribution, conce in quadratic mean - Weak convergence of	ities – ion for	Holdermula.	r, Jenso	on, Chebyshev,
_		Definition of product space – Fubini's theorem (-
two events – Ind	lependence of cla	asses – Independence of random variables – prop	perties	- Bore	el zero	-one law.
Unit:4						
only) – Central Liapounov theor	Limit Theorem	n's weak law of large numbers, Kolmogorov stron n – Lindeberg – Levy theorem, Linderberg – of) – Relation between Liapounov and Linderberg proof) – Conditional expectation – definition an	Felle g – Fel d simp	theo ller for ole pro	rem (v ms – R perties.	without proof), adon Nikodym
		Total Lecture	Hour Hour	s 60	Hours	5
Books for Stud						
	· · ·	Probability Theory, 3rd edition, New Age Intern	nationa	l Pvt.	Ltd.	
		ysis and Probability, Academic Press.				
	`	02): An Introduction to Probability Theory and M		natical	Statisti	ics, John Wiley
		(2005):Measure Theory, Hindustan Book Agend	cy.			
Reference Book		(2012) M. T. I.B. I. I.W. B.	TTT T		D . T	, 1
1 Basu A K. a	ind A Bandopad	nyay (2012): Measure Theory and Probability, P	'HI Le	arnıng	Pvt. Li	ta.

Tucker, H.G. (1967): A Graduate course in Probability, Academic Press

Chow, Y.S. and Teicher, H. (1979): Probability Theory, Springer

Billingsley P (1995): Probability and Measure, Wiley.

Course Code	STAT472	ADVANCED DISTRIBUTION THEORY	L	T	P	Credits
Core	MAJOR 17	Semester VII	4	1	-	4
Pre-requisite		Knowledge in Probability Theory	_	abus sion	2023	3-24
Course Objective	es		•		•	
The main objective	es of this course	are to:				
		ions of some important univariate and bivariate di				
		heory concepts like Compound, Truncated, Mixtu		n-cent	ral	
		Iratic forms and its distribution and Order Statistic	es			
Expected Course						
		ncepts and importance of univariate and bivariate	distrib	utions		
2 Knowledge of C	Compound, Trunc	cated, Mixture distributions and their applications				
3 To know Multiv	ariate Normal di	stribution and no-central sampling distributions				
4 The ability to lea	arn about distribu	ution of quadratic forms and its applications				
5 To learn the con	cept of order stat	tistics, its distribution and properties				
Unit:1						
Distribution of fu	nctions of rando	m variables - Cauchy, Inverse Gaussian, Lognor	mal, I	Logari	thmic	series an
Power series distr	ibutions - Multin	omial distribution				
Unit:2						
		Poisson – Bivariate Normal- Bivariate Exponen	tial of	Mars	shall	and Olkin
	ated distribution	s - Binomial, Poisson, Normal and Exponential				
Unit:3	ol distaibution (I	Definition and Concept only) - Sampling distribut	iona. N	Jon of	.m+mo1	ahi aanam
		operties - Distributions of quadratic forms unde				
		Cochran's theorem	HOIH	laiity	macp	chachee (
Unit:4						
Order statistics, th	eir distributions	and properties- Joint and marginal distributions of	order	statist	ics - l	Distributio
of range and mid	range – Simple p					
		Total Lecture	Hours	60	Hour	S
Books for Study	W . G . 1 D	1111 N (100 D G N B)	. ••	. ,		0.0 11111
		lakrishnan, N. (1994): Continuous Univariate Di	stribut	ions,	Vol. I	&2, Wile
	pabilty and Statis		~ W/:1.	C		Duolooloila
	, Kemp A.w. &	Kotz, S. (1994): Univariate Discrete Distribution	s, w 116	ey Ser	ies in	Probabili
and Statistics Rohatgi, V.K	and Saleh A F	E. (2008). An Introduction to Probability Theory	and M	[athen	natica	1 Statistic
Wiley Eastern		(2000). Thi introduction to Frobability Theory	and W	ianicii	iaiica	i Statistic
		J.(2003): Order Statistics, 3/e, John Wiley & Sons				
		tota K(1992): Bivariate Discrete distributions, M.		er.		
Reference Books						
1 Goon, A.M.,	Gupta, M.K. and	Das Gupta,B. (2013): Fundamentals of Statistics, V	/ol. II,	Worl	dPres	s, Calcutt
2 Parimal Mukl	nopadhyay(2006)	:Mathematical Statistics, 3/e, Books and Allied (I	P) Ltd,	Kolka	ata.	
- 						

3 Balakrishnan N and Lai C.D.(2009): Continuous Bivariate Distributions, Springer.

Course Code	STAT473	STATISTICAL INFERENCE-I	L	T	P	Credits
Core	MAJOR 18	Semester VII	4	1	-	4
Pre-requisite				abus sion	707.5-7.4	
Course Objecti	ves					
To provide a sy	stematic accoun	t of Neyman Pearson theory of testing	and cl	osely	relate	d theory of
point estimation	and confidence	sets, together with their applications				
Expected Cours	se Outcomes					
_		the course, student will be able to learn	estimat	ion an	d test	ing
techniques	1	,				C
Unit:1						
Estimation: Con	cept of unbiased	ness, sufficiency, consistency, efficiency	, comp	letene	ss - E	Exponentia
	_	ns - Minimum and uniformly minimum	_			_
Fisher informati	on measure - C	ramer- Rao inequality - Chapman-Rob	in ine	quality	/ - Bl	nattacharya
bounds (univaria	ate and multivari	ate case)				
Unit:2						
Rao-Blackwell	and Lehmann-S	Scheffe theorems - Ancillary statistic	- Ba	su's 1	heore	m and its
applications - M	ethods of estima	tion: method of moments, maximum lik	elihood	l estin	nation	, minimun
chi-square meth	od, method of sc	oring.				
Unit:3						
• •	•	AN) estimators and their properties – Delta				
	e invariant estima	tors - Pitman's method for obtaining location	n and so	cale inv	ariant	estimators
Unit:4			<u> </u>			. 1 1 .1
		on of confidence intervals using pivots			_	_
	_	ple confidence intervals - Concept of Ba	ayes es	umau	on an	a Minimax
estillator – Loss	and risk Tunction	ons – Simple problems.	II	- CO	House	•
D 1 4 G: 3		Total Lecture	nour	8 00	Hou	1.22
Books for Study	<u> </u>	1 D (2012) G 1 1 1 1 C D				
001		anthan P (2012): Statistical Inference, PF		D 1		
		007): Statistical Inference, 2/e, Duxbury				
	and Muralidhara	n (2005), A first Course on Parametric	ınıerer	ice, N	arosa	Publishing
House.						
Reference Book	- ~					

- 1 | Lehmann, E.L. (1986): Theory of Point Estimation (Student Edition). John Wiley & Sons.
- 2 Zacks, S.(1971): Theory of Statistical Inference, John Wiley and Sons. New York
- 3 Goon, A.M., Gupta, M.K. & Dasgupta, B (2016): An Outline of Statistical Theory, Vol-II.
- 4 Srivastava MK, Khan AH and Srivastava N (2014): Statistical Inference: Theory of Estimation. PHI

C	ourse Code	STAT474	ADVANCED SAMPLING THEORY	L	T	P	Credits
Cor	e	MINOR 7	Semester VII	4	1	-	4
Pre	-requisite		Knowledge of Introduction to sampling theory	Sylla Vers		2023	3-24
	rse Objective						
	3		teach basic ideas of sampling from an applied per				
	_		ce the methods of drawing samples using randor		_		
			introduce methods of sampling for small and large		•		
			e and non-response sample survey. Estimation of p	oopula	tion p	aram	eters.
	ected Course						
On 1			ne course, student will be able to:			1	
1	Needs of ba	sic and advance	concepts and importance of sampling methods				
2	Apply the ex	xisting ideas of	sampling methods to draw samples or sample surv	eys			
3	To understa	nd unbiased / bi	ased properties of estimators and unbiased estimat	te of			
	sampling va	riance					
4	Applying th	ese methods for	real life problems and Analyze the estimator beha	aviours	s to		
	real data set	s					
Uni	t:1						
			Techniques, Cluster Sampling (equal / unequal)				
			Γechnique: Two stage (equal / unequal) – varian	ce of t	he es	timat	ed mean –
		for stratification	and Ratio estimator.				
Uni					1		
			PS) sampling- Procedure for selecting PPS sample				
			Raj's ordered estimator and Horvitz-Thompson,	Yates	–Gru	ındy	Form and
	thy's unordere	ed estimators.			1		
Uni		1 . (1)	dies in Cinnal, Dendern Consuling - Dadie extin	-4	: - C4	- 4 ° C° -	1 D 1
			rties in Simple Random Sampling – Ratio estim				
			s, Regression estimators in Stratified Random Sar ssion Estimators	припід	– MI	ııtıva	mate Katio
Uni		inivariate Regie	SSIOII Estimators				
		onse methods –	Warner's, Simmon's and Two Stage response me	thode.	Sou	rces (of errors in
	_		the effects of call-backs and the errors of measures				
	•	nd their compor		mem	11011	Samp	ning ciron
	arces, types a	unun vonnpon	Total Lecture	Hours	60	Hou	•s
Dag	lra for Ctude						
	ks for Study	2 (1077): Samp	ling Techniques, 3/e, Wiley Eastern Ltd,				
		<u> </u>	5 (1986): Theory and Analysis of Sample Survey I	Decion	c \ \\/;1	AV E	actorn I +A
			V., Sukhatme S. and Asok C. (1984): Samplin				
5	Applications,		v., Sukhathle S. and Asok C. (1964). Samphili niversity Press and ISARI Publications, New Delhi	_	ory o	ı Su	iveys willi
Ref	erence Books	Iowa State OI	involsity 11035 and ISANT1 dollcations, New Delin				
		andhok D (1009	3): Sampling Theory, Narosa Publications, New Do	alhi			
1	Desiaj anu Ch	1 .(1 <i>9</i> 70	7. Samping Theory, Marosa Fublications, New Do	CIIII			

Steven K Thompson (2012): Sampling, 3/e, Wiley

Murthy, M.N (1979): Sampling Theory and Methods, Statistical Publishing Society,

Sarjinder Singh (2004): Advanced Sampling – Theory with Applications, Kluwer Publications

Calcutta

Course Code	STAT475	REGRESSION ANALYSIS	L	T	P	Credits
Core	MINOR 8	Semester VII	4	1	-	4
Pre-requisite		Statistical Inference	Syllabus Version 202			3-24
2. To imbibe the 3. To understand 4. To dissemina 5. To provide a Expected Course 1 Derive esti 2 Compute p 3 Learn about 4 Explain the 5 Conceptual Unit:1 Multiple linear m theorem – Model	nultiple linear regresse poretical skills in dered model diagnostics te the diagnostic and conceptual understate Outcomes: On the mators of the model or diagnostic e cause, consequence lize non-linear, robut to del - assumptions - in centered form —	and validation techniques I remedial measures of collinearity Inding of non-linear and robust regression E successful completion of the course, student will b I parameters and perform hypothesis testing	e able	ties –	ption	and their
Unit:2	y – its consequences.	ubset of the slope parameters – test in terms of R2 –	Gener	al Lir	ear F	Ivnothesi
testing - special o		nterval for the parameters – prediction intervals – ha				
Unit:3	1 111 1			* 7		
algorithms – Ster Consequences an	wise regression, Fo	ion – Criteria for evaluating subset regression mrward selection and backward elimination – Colline				
	on-linear growth mo	gression – Least squares in non-linear case – Estimat odels – Concept of non-parametric regression – near eviation regression – M estimator and its properties.				
	<u>1 – Least absolute de</u>		Ι.	(0.77		
Robust regression		Total Lecture Ho	urs	60 Ho	urs	
Robust regression Books for Study						9 for Uni
Robust regression Books for Study Alvin C. Ren I & II) Draper, N ar	cher (2000): Linear and Smith, H (1998):	Total Lecture Ho	(Cha _j	oters 7	7,8 &	

Chaterjee, S, Ali S. Hadi (2013): Regression Analysis by Example, 5thEdition, John Wiley and Sons.

Reference Books

2 Searle, S.R. (1997): Linear Models, John Wiley

3 Thomas P.Ryan(2006): Modern Regression Methods, John Wiley and Sons.

Seber G.A.F and Wild C.J. (2003): Nonlinear Regression, John Wiley and Sons

FOURTH YEAR – SEMESTER VIII

	i	FOURTH YEAR – SEMESTER VIII				
Course Code	STAT481	STATISTICAL INFERENCE II	L	Т	P	Credits
Core	MAJOR 19	Semester VIII	4	1	-	4
Pre-requisite			-	labus rsion	2023	3-24
Course Objectives	3		•			
•	•	iple and derive most and uniformly most pov	werful	tests		
		ributions under exponential class of family				
		of nuisance parameters				
•	•	t and likelihood ratio test methods				
		non-parametric test procedures	n+ vv:11	ha ah	la ta	
		e successful completion of the course, studes involving simple and composite hypothese				Dagraan lamma
			s using	g Neyi	11411-1	rearson tennina
		biased and similar tests				
		iple to derive test statistics for parametric tes	ting p	roblen	ıs	
4 Derive maxii	mal invariant test	functions				
5 Conceptualiz	e the working pr	inciples of various non-parametric tests				
Unit:1						
Unit:2 Unbiasedness in hy exponential family - Locally most pow Unit:3 Maximal statistic a properties - asympt Unit:4 Non-parametric tes U test - Kruskal Wa	ypothesis testing – examples - Sing yerful tests and Invariant test totic distribution ts - Kolmogorov allis test - Friedm	- Uniformly most powerful unbiased tests - milar test and complete sufficient statistic - States - Uniformly most powerful invariant tests - Uniformly most powerful invariant tests - Uniformly most powerful invariant tests - Applications of the LR tests. Smirnov one and two sample tests - Wald-Van's test - Sequential tests - structure of sequentia	Unbia imilar sts - I	ased to tests v	ood n tesi	ratio (LR) test
Ratio Test - determ	ination of the bo	undary constants – examples. Total Lecture	Hours	60	Hou	rs
Books for Study		Total Decidie	LIVUID		IIVU.	
	I and Dhanavanth	nan P (2012): Statistical Inference, PHI Learn	ning N	Jew D	elhi	
U U X		omano (2005): Testing Statistical Hypotheses				ringer
I .		amita Srivastava (2009): Statistical Inference				
Hall of India		,		<i>J</i> •	JI	,
	(1985): Non Para	metric Statistical Inference, 2nd Edition, Ma	arckel	Decke	r	
Reference Books						
1 Casella, G & B	Berger, R.L (2007): Statistical Inference, Duxubury Press, Bel	mont.	USA		
2 Ghosh, B.K (19	970): Sequential	Tests of Statistical Hypotheses, Addison We	sley			
3 Parimal Mukho	opadhyay (2006):	Mathematical Statistics, 3rd Edition, Books	& All	ied (P) Ltd.	, Kolkata

C	ourse Code	STAT482	MULTIVARIATE STATISTICAL ANALYSIS	L	Т	P	Credits
Cor	·e	MAJOR 20	Semester VIII	4	1	-	4
Pre	-requisite				abus sion	202	3-24
	ırse Objective						
		ves of this course a					
			nal distribution and its characterizations.				
	•		or mean vectors and covariance matrices.	Diag	::	1	
			olications of multivariate statistical methods like Canonical Correlation Analysis & Factor Analysis			ını A	marysis,
	ected Course		Canonical Correlation Analysis & Pactor Analysis)			
			course, student will be able to:				
1			applications and multivariate normal distribution			1	
		•					
2			mean vectors and covariances matrices				
3			the data into k populations				
4	Perform dia	mensionality reduc	ction of data into meaningful components				
5	Carry out a	nalyses of multiva	riate techniques using various datasets				
Uni	t:1 Mu	ltivariate Data an	d Multivariate Normal Distribution			•	
Mu	ltivariate norn	nal distribution— N	Marginal and conditional distributions - character	istic f	unctio	n. N	1 aximum
like	lihood estima	tion (MLE) of th	e parameters of Multivariate Normal and their	samp	ling d	listril	outions -
Infe	rence concern	ing the mean vector	or when covariance matrix is known				
Uni			tors and Covariance Matrices				
			nd its distribution – Uses of T ² statistic –Mahala				
			and D ² - Generalized variance – Wishart distrib				-
	•		Test for single covariance matrix – Test for equal	ity of	covari	iance	matrices
			Variance (MANOVA)				
Uni		ssification Models					
	•		tion into one of two populations (known and unknown an	nown	disper	sion	matrix) –
		_	pulations – Fisher's Linear discriminant function				
Uni			ction Techniques				
		_	s - Extraction of Principal components and th				Canonical
			ical correlation and variates - Factor analysis	– Ma	thema	tıcal	model -
Esti	mation of Fac	tor Loadings – Co	ncept of factor rotation – Varimax criterion				
			Total Lecture Hou	ırs	60 Ho	urs	
Boo	oks for Study						
1			roduction to Multivariate Statistical Analysis, 3/e,				
2	Johnson, R. A	A and. Wichern D.	W (2015): Applied Multivariate Statistical Analys	is, $6/\epsilon$, Pear	son E	Education
	India.						

Alvin C. Rencher (2012): Methods of Multivariate Analysis, 3/e, Wiley.

Narayan C. Giri (2003): Multivariate Statistical Analysis: Revised and Expanded, 2/e, CRC Press K.C. Bhuyan (2008): Multivariate Analysis and Its Applications, New Central Book Agency

Reference Books

Course Code	STAT483	DESIGN OF EXPERIMENTS	L	T	P	Credits
Core	MAJOR 21	Semester VIII	4	1	-	4
Pre-requisite		Knowledge in Distribution Theory & Statistical Inference	_	yllabu ersioi	- 1/	2023-24
Course Objective	es		ı			
The main objective						
	the need of exp	perimental design, understand the link between linear	ır m	odels	and	design o
experiments.			1			
2. Understand the Expected Course		, factorial designs, incomplete block designs and their	anar	ys1s		
-		ne course, student will be able to:				
•	•	r Hypothesis model, design matrix, C matrix and its pro	nort	ios		
			pert	108		
		ues in RBD, LSD and carry out the analysis				
	<u> </u>	founded 2n and 3nfactorial experiments and fractional			_	
	e analysis of inc	omplete block designs: BIBD, PBIBD(2), Split plot an	d St	rip plo	t des	signs
5 To understa	and and use appr	opriate experimental designs to analyze the experiment	al da	ıta.		
Unit:1						
than one observation and non-iterative rand their analysis Unit:3 Confounding - Conf	on per cell and inethods – Loss of omplete and Par	bletely Randomized Design (CRD), Randomized Block Latin Square Design (LSD) – Derivation of one and two of Efficiency due to missing values - Factorial experiment tial Confounding in 2n and 3n experiments - Fractiona plot designs and their analysis	mis nts: 2	ssing v	alue 3n e	es, Iterativ xperiment
	Designs - Rala	nced Incomplete Block Design (BIBD)- Types of BIE	RD -	Simn	le co	
•	•	alysis of BIBD – Partially Balanced Incomplete Block I		•		
classes – intra blo		· ·	•	-		
		Total Lecture Hours	60 I	Iours		
Books for Study						
	d Giri.N.C. (198	6): Design and Analysis of Experiments, Wiley Eastern	1.			
2 Montgomery,	C.D (2017): D	esign of Experiments, 9/e, John Wiley and Sons.				
3 Cochran .W.C	G. and Cox .G.M	I. (1995): Experimental designs, 4/e, Wiley.				
4 Searle, S.R(19	987) : Linear Mo	odels, John Wiley and Sons.				
Reference Books						
1 Kabe D. G. a York	nd Gupta A. K.	(2007): Experimental Designs: Exercises and Solution	ıs, S	pringe	er-Ve	erlag, Ne

Klaus Hinkelmann and Kempthorne, O. (1994): Design and Analysis of Experiments, John Wiley and Sons.

ParimalMukhopadhyay(2005): Applied Statistics, 2/e, Books and Allied (P) Ltd, Kolkata.

Course Code	STAT484	STOCHASTIC PROCESSES	L	T	P	Credits
Core	MAJOR 22	Semester VIII	4	1	-	4
Pre-requisite			Sylla Vers		2023	3-24
Course Objectiv						
3	ves of this course					
		c process which students need for their exp				
		perties of stochastic processes, discrete an processes and branching process.	a continu	ous N	тагко	ov chains, Brownian
		processes and branching process. ertaining to handling various stochastic mod	dels.			
		s stochastic models for forecasting and pred				
Expected Cours	_					
On the successfu	l completion of the	e course, student will be able to:				
1 Apprehence	the concept of sto	chastic process, its specifications, and analy	yze the cla	assific	ation	of states; construct
* *	nain for real world		,			,
2 Understand	d Continuous time	Markov processes and obtain the birth and	death prod	cesses	; exp	lore their
application	s to various practi	cal problems.				
3 Explore th	e concept of Statio	nary processes in univariate and multivariat	te scenario	os; dei	ive tl	he properties of
	iance and autocorr					
	•	enewal function, distribution of arrival and	inter arriv	al tin	nes ar	nd renewal policy
	ed conditions					
Unit:1						
		es- Specifications of a stochastic processes				
		ates and chains - Higher transition probabili			_	_
•	juations - Stationai	ry distribution - Ergodic theorem - One dime	ensional ra	indom	wall	and Gambler's ruin
problems.				1		
Unit:2	a Manlaay Duaga	cas Daissan musassas and malated distri	hutiona	Dintl		I dooth mucaasaa
		ses- Poisson processes and related distri- ations of birth and death processes - Applica				
Wiener process	ier differential equ	ations of office and death processes - Applica	mons to q	ucues	and s	storage problems and
Unit:3						
	sses- Weakly stat	onary and strongly stationary processes -	Propertie	s of :	auto	covariance and auto
•	•	ve and Moving average processes - Spectral	•			
of moving average	•	and his ting a teruge processes. Special	Gonstey 10		- ~P	oou ur roprosontuiron
Unit:4	5- F					
	Renewal equation	- Stopping time - Wald's equation - Elemen	ntary renev	val th	eoren	n and its applications
•	*	lual and Excess life times - Markov renewal	-			* *
		Total Lectu	re Hours	60	Hou	rs
Books for Study				- I		
		ocesses, New Age International Publishing	Limited, 1	New I	Delhi.	
		75): A First Course in Stochastic Processes				
Reference Book						
1 Cinlar, E. (20	013): Introduction	to Stochastic Processes, Courier Dover Pub	lications.			
		84): The Theory of Stochastic Processes, Ch		Hall		
		<u> </u>	_		Riolo	ory Second Edition
5 Liliua J.S. A		ntroduction to Stochastic Processes with A	кррисацог	15 10	DIOIO	gy, second Edition,

Papoulis, A. and Pillai, U.S. (2006). Probability, Variables and Stochastic Processes (Fourth Edition). Tata McGraw-

Resnick, S. (1992): Adventures in Stochastic Processes, Birkhauser, Boston. (Reprint 2005). Tjims, H.C. (2003): A First course in Stochastic Models, John Wiley & Sons, New Delhi.

Course Code	STAT485	RELIABILITY THEORY	L	T	P	Credits
Core	MAJOR 23	Semester VII	4	1	-	4
Pre-requisite		Knowledge in Probability Distributions		Syllabus Version 2023-24		3-24
Course Objectiv						
 To study co Measures o Construction 	of Reliability and lon of Reliability m	stem and its structure Life time experiments and deriving life testing da	ata			
Expected Cours						
On the successfu	ıl completion of th	ne course, student will be able to:				
1 To aware	the objectives, ne	eds and applications of reliability and ideas of st	ructural	reliab	ility.	
2 To unders	tand the statistica	measures and life distributions in reliability				
3 To Study	different ageing p	roperties and deriving life distribution for reliable	ility ope	ration		
4 Estimation	n of reliability par	ameters and other associated concepts.				
5 To analyz	e the concepts of	reliability data				
Unit:1		Structural Reliability				
Unit:2 Definition of rel MTBF, Mean F distributions- S problems for reli Unit:3	Measures of liability function-Residual life and Some common lability measures Age	systems; Reliability importance of components; Reliability and Common Life distributions measures of reliability-pdf, cdf and, hazard or Bathtub hazard function-simple problems. Clife distributions-Exponential-Weibull-Rayle ing Properties of Life Distribution	failure Concept eigh-Ga	rate : of Li mma-l	functi fetim ognor	on, MTTF e and Life rmal-simple
		fe distributions and their duals - preservation				
• •	or exponentiality	of coherent systems, convolutions and mixtu	res, Ho	llande	r –Pr	oschan and
Unit:4		of lifetime and other related techniques				
		plete and censored (left and right)-type-I and	l type-I	I sam	ples,	Likelihoo
		of reliability parameters using common life of		ion re	ferrec	l in unit-II
		al time of test, basic concepts of accelerated life	testing		0 TT	
Total Lecture H Books for Study				0) Hot	ırs
		(1985) Statistical Theory of Reliability and Life	Testing	g; Rine	ehart a	and
	F. (2003): Statistic	al Models and Methods of Life Time Data; John	Wiley.			
		b. Wilson, C. Shane Reese, Harry F. Martz(2008)		an Rel	iabili	ty, Springe
4 Deshpande		G (2015): Lifetime Data: Statistical Models a				
Reference Book						
1 Bain L.J. an Dekker.	nd Max Engelhard	lt (1991): Statistical Analysis of Reliability and	l Life T	esting	Mod	lels; Marce
2 Nelson, W (1982): Applied L	fe Data Analysis; John Wiley				
	· ·	to Reliability Analysis, Springer Verlag.				
4 N (1 - 11 A	W on 4 Oil-! - 1/2	007). Life Distributions Cominger				

Marshall, A.W. and Olkin I(2007): Life Distributions, Springer

Syllabus for Pre Ph.D.-Examination in Statistics STAT 901: Research Methodology

UNIT-I:

Research Methodology: An Introduction - Meaning of Research, Objectives of Research, Types of Research, Research Approaches, Significance of Research, Research Methods versus Methodology, Research and Scientific Method, Research Process, Criteria of Good Research, Problems Encountered by Researchers in India. **Defining the Research Problem** - What is a Research Problem? Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem.

UNIT-II:

Interpretation and Report Writing - Meaning of Interpretation, Techniques of Interpretation, Precautions in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports.

UNIT-III:

Law of large Numbers (IID and Non-IID cases)-Distribution function and methods of transformations of random variables, Generating Function: Probability, Moment and Characteristic functions for univariate set up. Probability distributions: Exponential; Multinomial, Multivariate normal, Weibull distributions-properties and characterizations.

UNIT-IV:

Estimation-Classical and Bayesian Approach, Methods of Estimation-Moment, Likelihood and EM Algorithm-Properties and related problems- Prior distribution: Conjugate , informative and non-informative priors, Loss function-SELF, LINEX Loss function, Risk functions-Problems.

UNIT-V:

Generating random samples using probability integral transformation – accept/reject algorithm – metropolis algorithm, Gibbs sampling, Monte Carlo integration, MCMC principle – Metropolis Hasting algorithm, Bootstrap methods.

Books for Study:

For Unit-I and II

Kothari, C.R. and Gaurav Garg(2024). Research Methodology: Methods and Techniques. 5th ed. New Age International Publishers. [Relevant sub-titles under Chapters 1, 2 and 19].

For Unit-III and IV

Rohatgi, V. K. and Md. Ehsanes Saleh, A. K. (2015). An introduction to probability theory and mathematical statistics, John Wiley & Sons. [Relevant sub-titles under Chapters 2, 3, 7 and 8].

For Unit-V

Robert, C.P., and Casella, G. (2004), Monte Carlo Statistical Methods, Springer. [Relevant sub-titles under Chapters 2, 3, 7 and 9]

Syllabus for B. Tech. courses under NEP programme

PROBABILITY AND STATISTICS

Unit I – Basic Statistics

Measures of Central Tendency and Dispersion in Frequency Distributions – Summary Statistics – Measure of Central Tendency – Arithmetic mean – Weighted Mean – Geometric Mean – Median – Mode – Dispersion – Average Deviation Measures - Coefficient of Variance (CV).

Unit II -Basic Probability

Introduction, random experiments, sample space, events – Types of events - Definitions of Probability – classical, statistical and axiomatic - Conditional Probability - Addition and Multiplication theorem of probability - Bayes' theorem – simple problems.

Unit-III: Random variables and its implications

Random Variables: Discrete and continuous random variables, Probability mass function, Probability density function, Cumulative distribution function their properties. Expectation, variance, moments and moment generating function- simple problems.

Unit IV: Discrete and Continuous Distributions

Discrete probability distributions: Binomial, Poisson, Geometric,— properties and applications. Continuous Probability distributions: Uniform, Normal, Exponential, Beta, Gamma - properties and applications-simple problems.

Unit V- Correlation and Regression

Bivariate data: Definition, scatter diagram, simple correlation, rank correlation. Trivariate Data: Partial and Multiple correlation coefficients. Regression, regression coefficient, Estimation using the Regression Line, Fitting of linear and quadratic regression using principle of least squares-simple problems.

Books for study:

- 1. Sheldon M. Ross: Introduction to Probability and Statistics for Engineers and Scientists, Academic Press, Elsevier (2014).
- 2. Gupta,S.C. and Kapoor, V.K. (2000): Fundamentals of Mathematical Statistics, 10/e, Sultan Chand and sons.
- 3. Gupta. S.P 'Statistical Methods' Sultan Chand & Sons, ^{48h} Edition, 2022.
- 4. Hooda, R. P. Statistics for business and economics. Vikas Publishing House, 2013.
- 5. Anderson D R, Sweeney D J and Williams T A: Statistics for Business and Economics, Thomson Publisher, 2005.
- 6. Levin. Richard. I and Rubin. David. S 'Statistics for Management' Prentice-Hall, 8th Edition. 2017.