PONDICHERRY UNIVERSITY PUDUCHERRY – 605 014

6th PG BOARD OF STUDIES IN AGRICULTURAL SCIENCES

M.Sc. (Agri.) Soil Science REGULATIONS AND CURRICULUM

(Effective from 2022-23 batch onwards)

PANDITJAWAHARLAL NEHRU COLLEGE OF AGRICUL AND RESEARCH INSTITUTE (PAJANCOA&RI) (A Government of Puducherry Institution) KARAIKAL – 60

PONDICHERRY UNIVERSITY PUDUCHERRY – 605 014

REGULATIONS AND CURRICULAM

for

M.Sc. (Agriculture/Horticulture)

(Effective from 2022-23)

REGULATIONS

PONDICHERRY UNIVERSITY POSTGRADUATE DEGREE PROGRAMME (Agriculture/Horticulture)

SEMESTER SYSTEM – REGULATIONS

1. SYSTEM OF EDUCATION

- 1.1 The rules and regulations provided herein shall govern Masters degree programmes [M.Sc. (Agri.) or M.Sc. (Hort.)] offered by Pandit Jawaharlal Nehru College of Agriculture and Research Institute (PAJANCOA&RI), Karaikal under Pondicherry University.
- 1.2 The duration of Master's programme is two academic years (4 semesters). The first year of study shall be the first and second semesters after admission. The second year of study shall be the third and fourth semesters.

2. COMMENCEMENT

These regulations shall come into force from the academic year **2022-23**

3. DEFINITIONS

- 3.1 **'PG Coordinator'** means a teacher of a department who has been nominated by the Head of the Department to coordinate the postgraduate programmes in the department. The coordinator looks after registration, time table preparation, regulation of credit load, maintenance of individual student's files, *etc.*,
- 3.2 **'Semester'** means a period consisting of 110 working days inclusive of the midsemester and practical examinations but excluding the study holidays and final theory examinations.
- 3.3 **'Academic year'** means a period consisting of two consecutive semesters including the inter-semester break as announced by the Dean.
- 3.4 **'Curriculum'** is a group of courses and other specified requirements for the fulfillment of the postgraduate degree programme.
- 3.5 **'Curricula and syllabi'** refer to list of approved courses for postgraduate degree programmes wherein each course is identified with a three-letter code, a course number, outline of the syllabus, credit assigned and schedule of classes.
- 3.6 **'Course'** is a teaching unit of a discipline to be covered within a semester having a specific number and credits as detailed in the curricula and syllabi issued by the University.
- 3.7 **'Major Course'** means the subject of Department or discipline in which the student takes admission. Among the listed courses, the core courses compulsorily to be registered shall be given '*' mark.

- 3.8 'Minor Course' means the course closely related to a student's major subject.
- 3.9 **'Supporting Course'** means the course not related to the major course. It could be any course considered relevant for student's research work or necessary for building his/her overall competence.
- 3.10 **'Common course'** means a course which is compulsorily registered by the postgraduate student for the completion of postgraduate degree programme. The marks obtained by the student in a common course will also be taken into account for calculating OGPA.

Some of the common courses are in the form of e-courses/MOOCs. The students may be allowed to register these courses/similar courses on these aspects, if available online on SWAYAM or any other platform. If the student has already completed any of the common courses during UG, he/she may be permitted to register for other related courses with the prior approval of the Head of the Department/Board of Studies.

- 3.11 **'A credit'** in theory means one hour of class room lecture and a credit in practical means two and half hours of laboratory or workshop or field work per week.
 - *Explanation* : A 1+1 course (2 credits) means 1 hour theory and 2.5 hours practical per week.
 - A 0+1 course (1 credit) means 2.5 hours practical per week
 - A 1+0 course (1 credit) means 1 hour theory per week
- 3.12 **'Credit Load'** of a student during a semester is the total number of credits of all the courses including common courses, that a student register during that particular semester.
- 3.13 **'Grade Point'** means the total marks in percentage obtained in a course divided by 10 and rounded to two decimals.
- 3.14 **'Credit Point' means** the grade point multiplied by the credit load of the course.
- 3.15 **'Overall Grade Point Average (OGPA)'** means the total credit point of the courses completed by the student divided by total credits of the courses studied. The OGPA is to be worked out by rounding to nearest two decimals.
- 3.16 **'Arrear examination'** is an examination written for the failed course by a student without undergoing regular classes in that course.
- 3.17 **'Transcript Card'** is the consolidated report of academic performance of a student issued by the University on completion of the curriculum fulfillment. The format of Transcript Card is furnished in *Annexure-1*.

4. POSTGRADUATE PROGRAMMES

The list of various postgraduate programmes offered in various dicipline of the College is as follows:

M.Sc. (Agri.) Agricultural Economics M.Sc. (Agri.) Entomology M.Sc. (Agri.) Agronomy M.Sc. (Agri.) Genetics and Plant Breeding M.Sc. (Agri.) Soil Science M.Sc. (Hort.) Vegetable Science

5. ADMISSION

5.1 **Eligibility for admission:**

- i. Candidates seeking admission to master degree programme should have a four year bachelor's degree from State Agricultural Universities (SAU) or from other universities recognized by UGC/ICAR.
- ii. Candidate who has undergone the course credit system with an OGPA of 3.00 out of 4.00 or 7.00 out of 10.00 or 70 percent aggregate alone is eligible to apply for various Master's degree programmes in this Institute. Whereas, for SC/ST/PWD candidates the said requirement is an OGPA of 2.50 out of 4.00 or 6.00 out of 10.00 or 60 per cent aggregate. However, this will not apply to State Department nominees. Just a pass in the concerned degree is sufficient for them.
- iii. Prescribed minimum qualification from a recognized University for admission to Master's degree programme:

SI.No.	Discipline	Requirement for Master's Degree		
1.	Agricultural Economics	B.Sc.(Ag./Hort./Agrl. Marketing and		
		Cooperation/Forestry) or B.Sc.(Hons)		
		Agriculture/Horticulture/ Agrl. Marketing		
		and Cooperation/Forestry		
2.	Agronomy	B.Sc. (Ag.) or B.Sc.(Hons) Agriculture		
3.	Entomology	B.Sc.(Ag./Hort./Forestry/Sericulture) or		
		B.Sc. (Hons) Agriculture/Horticulture/		
		Forestry / Sericulture		
4.	Genetics and Plant Breeding	B.Sc.(Ag./Hort./Forestry) or		
		B.Sc. (Hons) Agriculture/Horticulture/		
		Forestry or B.Tech. (Biotechnology)		
5.	Soil Science	B.Sc.(Ag./Hort) or B.Sc. (Hons)		
6.	Horticulture (Vegetable Science)	Agriculture/Horticulture		

5.2 Method of selection:

- i. Candidates shall be required to be present on the specified date for a written test at their own expenses. If selected, they should come prepared to pay fees and get admitted immediately.
- ii. The students will be ranked based on total marks scored by them in the categories mentioned below

Category	Weightage of marks (%)
OGPA in Bachelor's degree programme	50
Entrance	50
Total	100

iii. Written test with objective type (multiple choices) questions in the specific subject will be of one and half hour duration. A minimum of 50% (25 marks) is must for considering the candidate for admission. However, in case of SC/ST candidates, a minimum of 40% (20 marks) is must for considering the candidate for admission into that category. Note: If a SC/ST candidate seeks admission under other categories a minimum of 50% (25 marks) in entrance test is must

- iv. Candidates applied for two subjects should write the examination for both subjects continuously for two hours.
- v. Seats are reserved for candidates belonging to scheduled Castes/Scheduled Tribes/Other Backward Classes as per the norms of Government of Puducherry.
- vi. Two seats of the total sanctioned strength, irrespective of the discipline, are reserved for the in-service candidates of Department of Agriculture and Farmers Welfare, Government of Puducherry.

6. LANGUAGE REQUIREMENT

The medium of instruction is English. The postgraduate students should have adequate knowledge in English to read, write and speak in English and able to prepare high quality research papers in English.

7. RESIDENTIAL REQUIREMENT

- 7.1 The minimum residential requirement for Masters' degree shall be two academic years (four semesters) and the course should be completed within the maximum period of <u>five academic years (ten semesters)</u> from the date of admission.
- 7.2 In case a student fails to complete the degree programme within the maximum duration of residential requirement (five years), his/her admission shall stand cancelled.

8. **REGISTRATION**

The list of courses offered to the student in each semester shall be sent by the Dean to the Controller of Examinations for Registration of examination as instructed by the University from time to time.

9. DISCONTINUANCE AND READMISSION

As per University Regulations.

10. ADVISORY COMMITTEE

10.1 Each Postgraduate student shall have an advisory committee to guide the student in carrying out the programme. Only recognized teachers are eligible for teaching PG courses and guiding thesis research.

10.2 Chairman/Guide:

- i. The approved guides by the Dean of the college only can be the guide for the students.
- ii. Every student shall have a Chairman of the Advisory Committee who will be from his/her major field of studies.
- iii. The Head of the departments will allot the masters students among the recognized guides.
- iv. A teacher should have a minimum of two years of service before retirement for

allotment of Master's students.

v. At any given time, a PG teacher shall not be a chairman of Advisory Committee (including Master's and Ph.D. programmes) for more than five students.

10.3 Chairman/ Co-guide/ Member from other collaborating University/ Institute/ Organization:

- i. The University / Institute may enter into Memorandum of Understanding (MOU) with other Universities / Institutions / Organizations for conducting research.
- ii. The proposed faculty member from the partnering institution can be allowed to act as Co-guide / Member of Student Advisory Committee

Note: In special cases the proposed faculty member from the partnering institution can be allowed to act as Chairperson.

10.4 Members :

- i. The advisory committee shall comprise a Chairman and two members. One member shall be from the concerned department and another member shall be from other department or discipline related to field of thesis research. Staff having UG teaching experience of four years or more may be included as the members of the Student Advisory Committee.
- ii. In thesis topics involving more of inter-disciplinary approach, the number of advisory committee members from other disciplines may be increased by one with prior approval of the Dean.

10.5 **Formation of advisory committee:**

- i. For Master's Programme the advisory Committee Chairman and members will be in the cadre of Professors, Associate Professors and Assistant Professors having three years of experience.
- ii. Only recognized teachers are eligible for teaching PG Courses and guiding thesis research.
- iii. A proposal for the formation of the advisory committee (Form 1) of the student shall be forwarded by the Heads of the Department to the Dean for approval within one month from the commencement of the first semester.

10.6 Changes in advisory committee:

- i. The proposal for changes in the advisory committee (Form 1a) is to be sent to the Dean for approval, if it is keenly felt that such changes are absolutely necessary. The reason for such change should be indicated.
- ii. The changes may be effected immediately, when the existing members are transferred elsewhere or resigned or retired.
- iii. If a guide goes abroad or within India for more than 6 months, to attend any training or on leave for more than six months, the Chairman of the Advisory Committee has to be changed immediately. The same conditions will apply to members also.

10.7 Absence of member during qualifying/final viva-voce examination:

i. Conducting qualifying and thesis final viva voce examination in the absence of

members is not allowed.

- ii. Under extra-ordinary circumstances if the qualifying/final viva-voce examination to postgraduate student has to be conducted in the absence of one or two advisory committee members, permission to conduct the examination by coopting another member in such contingencies should be obtained from the Dean in advance.
- iii. The co-opted member should be from the same department of the member who is not attending the examinations.
- iv. In the absence of the Chairman of advisory committee, respective Heads of Departments should act as Co-Chairman with prior permission of Controller of Examinations.

10.8 **Duties and responsibilities of the advisory committee**:

- i. Drawing the student's academic plan for postgraduate programme.
- ii. Guidance throughout the programme of the student.
- iii. Guiding the student in selecting a topic for thesis research and seminar.
- iv. Evaluation of research and seminar credits.
- v. Correction and finalization of thesis draft
- vi. The members should meet together along with the student for all the above purposes and sign the appropriate documents.

11. PLAN OF COURSE WORK:

The student's plan for postgraduate course work (Form 2) drawn up by advisory committee shall be sent for the approval of the Dean before the commencement of the mid semester examination during the first semester.

12. PROGRAMME OF RESEARCH WORK

The proposal for research programme of the student, in the prescribed format (Form 3) and approved by the advisory committee, shall be sent for approval of the Dean before the end of the semester in which the research credits are registered for the first time or before taking up of the research work whichever is earlier.

13. CREDIT REQUIREMENTS

13.1 **Minimum credit requirement:** A postgraduate student should complete a minimum of 70 credits as detailed below for award of the Master's degree.

Details	Minimum Credits
Major courses	20
Minor courses	08
Supporting courses	06
Common courses*	05
Seminar	01
Research	30
TOTAL	70

* List of Common courses

Course code	Course Title	Credit hour
PGS 501	Library and information services	0+1
PGS 502	Technical writing and communication skills	0+1
PGS 503	S 503 Intellectual property and its management in	
	agriculture	
PGS 504	Basic Concepts in Laboratory techniques	0+1
PGS 505	PGS 505 Agricultural research, research ethics and rural	
	development programmes	

- 13.2 **Maximum credit load:** A postgraduate student can register a maximum of 22 credits per semester including common courses, seminar and research. However, research credits registered per semester should not exceed 15.
- 13.3 **Comprehensive qualifying examination and thesis:** A postgraduate student should successfully complete a comprehensive qualifying examination and thesis in the major field of study and submission of thesis thereon.

13.4 Extra Credits:

- i. Over and above the prescribed minimum credit requirements, extra course credits up to a maximum of six can be registered for Master's programme.
- ii. The extra credits registered will be accounted for calculation of OGPA.

14. ATTENDANCE REQUIREMENTS

- 14.1 i. A minimum of 80 per cent attendance separately in theory and practical of the concerned course is a must, failing which the student shall not be permitted to appear for both final theory and final practical examinations in the course concerned and grade 'E' (incomplete) will be awarded.
 - ii. If a student falls short of the required attendance to an extent of 10 per cent or less, the shortage may be condoned by the Dean on the recommendation of the Advisory Committee and the concerned Head of the Department, on the condition that such shortage in attendance was due to unavoidable circumstances (on medical grounds) and such absence was continuous.
- 14.2 The student securing 'E' grade in a course must re-register the course when offered again with the permission of the University.

14.3 Calculation of Attendance

a) THEORY:

- i. Number of classes conducted for a course from the first instructional day as per the time table to the last theory class of that semester is to be construed as the total number of theory classes conducted by the course teacher.
- ii. The mid-semester examinations are normally conducted during class hours.
- iii. The attendance for mid semester examination shall be counted as a theory class for calculating attendance.

b) PRACTICAL:

i. Number of practical classes conducted for a course from the first instructional

day as per the time table to the last practical class of that semester is to be construed as the total number of practical classes conducted by the course teacher.

- ii. The final practical examination will be conducted after the completion of 96 working days as per the schedule.
- iii. The attendance for practical examination shall not be counted for calculating the attendance for practical.
- 14.4 For calculating 80 per cent attendance the number of instructional days may be calculated only from the date of joining of the student for first year first semester only.
- 14.5 The students failing to attend the classes / examinations on non-official ground will be treated as absent.
- 14.6 Students deputed for sports, cultural meets *etc.*, with prior permission of the Dean of the college shall be given attendance for the period of absence. However, students under this category must have attended a minimum of 50 per cent classes in the total theory and practical classes conducted.

15. EVALUATION OF STUDENT'S PERFORMANCE

15.1 **Distribution of marks**:

- i. All students shall abide by the rules for evaluating the course work under the semester system of education, as prescribed from time to time by the university. The weightage of Theory and Practical shall be in the ratio of 80:20 respectively.
- ii. The student should secure a minimum of 50 per cent marks in theory as well as in practical with an aggregate of 70 per cent to secure a pass in a course.
- iii. The student should secure a minimum of 50 per cent marks in the final theory examination conducted by the University for securing a pass in a course.

Examination	Courses with theory and practical	Courses with only theory	Courses with only practical
Mid Semester (Internal)	20	30	30
Term paper (Internal)	10	10	10
Final Theory (External)	50	60	
Final Practical	20		60
TOTAL	100	100	100

iv. In each course, examinations will be conducted for 100 marks as detailed below.

15.2 Mid Semester Examination (Internal Assessment):

- i. Writing the mid-semester examination is a pre-requisite for writing the final theory and final practical examinations.
- ii. Student failing to write mid-semester examination(s), shall not be permitted to attend the classes further in the course(s) concerned and the student will be awarded 'E' grade.
- iii. The mid-semester examinations shall be conducted for a duration of one hour and for 20 or 30 marks.

- iv. The Head of the Department with the help of the concerned PG coordinator shall prepare and announce the schedule of mid-semester examinations.
- v. The mid-semester examinations shall be conducted from the 56th working day of the semester.
- vi. The mid-semester examination shall be conducted and evaluated internally by the concerned course teacher(s).
- vii. The mid-semester examination mark list should be sent by the course teacher to the academic section of the college 10 days prior to the commencement of final practical examinations along with term paper mark.

15.3 Missing Examination:

- i. Missing examination shall be permitted only for mid-semester examination in deserving cases on the recommendation of the course teacher/Chairman and Head of the department and on prior approval by the Dean.
- ii. The missing tests are not allowed for final theory and final practical examinations.
- iii. The student shall write, in advance, to the Dean through the Chairman, PG coordinator and Head of the Department stating the reason for missing the midsemester examination(s). Based on the recommendation of the Chairman, PG coordinator and the Head of the Department, the Dean shall permit the student for missing the mid-semester examination(s).
- iv. A student missing mid-semester examination(s) with the prior approval of the Dean shall be permitted to take up missing examination of the particular course, subject to payment of the prescribed missing examination fee for each missing mid-semester examination.
- v. Students deputed for official programmes of the College/University are exempted from paying the fee for missing test.
- vi. Such missing examinations should be completed outside the regular class hours within 15 working days after the respective examinations.
- vii. Attendance will not be given for taking up missing examinations.

15.4 **Final Theory Examination:**

- i. An examination schedule prepared by the Controller of Examination for the final theory examinations shall be the final. The schedule of examinations shall be adhered strictly.
- ii. The duration of final theory examinations will be two and half hours for courses with theory and practical (50 marks) or three hours for courses with only theory (60 marks).
- iii. The final theory examinations shall be conducted by the University. Evaluated by two examiner, one by internal and one by external. However, in case of Non-credit e-courses, the final theory examination shall be conducted internally by the course teacher.
- iv. In the evaluation process, if deviation is more than 20 per cent between the first and second evaluator, the paper shall be referred to third examiner who shall also be an external examiner.

15.5 Final Practical Examination:

- i. The Dean shall announce the commencement of final practical examinations. The Heads of the Departments shall prepare the schedule for practical examination.
- ii. The final practical examinations shall be conducted after the completion of minimum of 96 working days.
- iii. Submission of bonafide practical records certified by the Course Teacher is a prerequisite for appearing in a practical examination failing which 'F' grade will be awarded.
- iv. For conducting final practical examination in each course, an *external examiner* (faculty of the Department other than the course teacher) shall be nominated by the Dean and the course teacher will be the *internal examiner*.
- v. In the event of external/internal examiner nominated for practical examination could not conduct the examination, then the Dean shall nominate an alternative examiner to conduct practical examination.
- vi. The duration of final practical examination shall be two and half hours.
- vii. The practical examinations shall be jointly conducted by the internal and external examiners with mutual co-operation.
- viii. They shall evaluate the candidates appearing at the examination according to their performance and the Forms so prepared shall be signed by both the examiners.
- ix. The practical examination marks should be communicated to the University/ uploaded in the university website within 10 days after conduct of examination duly signed by all the examiners and hard copy forwarded to the university thereon.

15.6 Arrear examination:

- i. Arrear examination is permitted for the final theory and final practical examinations only.
- ii. The students are permitted to write the arrear examinations as and when conducted by the University.
- iii. A student is permitted to write the final theory and practical examinations only two times during 5 years duration excluding the regular final examination (Mid-semester marks and Term paper marks shall be retained as such).
- iv. In the event of a student failing to secure pass in the two arrear examinations permitted, he/she has to re-register the course along with the juniors as and when the course(s) are offered with the permission of the University and on payment of the prescribed fees.

15.7 **Evaluation of course**:

- i. Each course shall carry a maximum of 100 marks. The results of the course shall be indicated by the grade points ranging from 0 to 10.
- ii. The total marks in percentage obtained by the student in a course shall be divided

by 10 and rounded to two decimal places to get the grade point.

- iii. The minimum Grade Point to be secured for the successful completion of a course shall be 7.00.
- iv. In case of courses with theory and practical, minimum of 50 per cent mark separately in theory and practical with an aggregate of 70 per cent is essential.
- v. Securing a grade point less than 7.00 in a course will be treated as 'F' (Failed) and the Grade Point will be 0.00 for calculating the GPA/OGPA. The following symbols may be used
 - E INCOMPLETE (Lack of 80 per cent Attendance/other reasons)
 - F FAILED

15.8 Question paper pattern for theory examinations :

15.8.1 The question paper pattern for mid semester (internal) examinations are indicated below:

Part	Type of question	Number of questions	Number of questions to be answered	Mark per question	Total marks		
	Courses with theory and practical (1+1 or 2+1 courses)						
	(20 M	arks & 1 hour	duration)				
А	Objective*	20	20	0.5	10		
В	Definitions/Concepts	12	10	1.0	10		
	TOTAL				20		
Courses with only theory (1+0 or 2+0 courses) (30 Marks & 1½ hour duration)							
А	Objective*	30	30	0.5	15		
В	Definitions/Concepts	18	15	1.0	15		
	TOTAL				30		
Courses with only practical (0+1 courses) (30 Marks & 1½ hour duration)							
А	Objective*	30	30	0.5	15		
В	Definitions/Concepts	18	15	1.0	15		
	TOTAL				30		

* Questions should be Fill-up the blanks, Choose the best among four options, True / False or Match the following type with equal number of question in each type and one or two more questions in any one type if examination is conducted for 30 marks

Part	Type of question	Number of questions	Number of questions to be answered	Mark per question	Total marks			
	Courses with theory and practical (1+1 or 2+1 courses)							
	(50 M	arks & 2.5 ho	urs duration)					
Α	Objective (MCQ's only)	20	20	0.5	10			
В	Definitions/Concepts	12	10	1.0	10			
С	Paragraph answers	7	5	2.0	10			
D	Essay type answers	5	5	4.0	20			
	(<u>EITHER OR </u> type) - One							
	main question from each							
	unit shall have one choice							
	TOTAL				50			
	Courses with only theory (1+0 or 2+0 courses)							
	Final Theory Examina			•				
А	Objective (MCQ's only)	20	20	0.5	10			
В	Definitions/Concepts	18	15	1.0	15			
С	Paragraph answers	7	5	2.0	10			
D	Essay type answers	5	5	5.0	25			
	(<u>EITHER OR </u> type) - One							
	main question from each							
	unit shall have one choice.							
	TOTAL				60			

		C	/	
15.8.2 The question paper	pattern	final theory	(external)) examinations are indicated below:

15.9 **Question paper pattern for final Practical Examination**: The following distribution of marks shall be adopted in conducting the final practical examinations.

Details	Courses with Theory and Practical	Courses with only Practical	
Practical Field work / Lab Work / Written exam	20 (2.5 hrs)	60 (3 hrs)	
Total	20	60	

For conducting practical examinations, the type and number of questions can be decided by the concerned internal and external examiners. Choice may be given to the extent of 20 per cent under subjective type questions.

15.10 Term Paper:

- i. Submission of a term paper by the students is a must.
- ii. The term paper topics shall be assigned by the course teacher. Term papers should cover a wide range of subjects within the course limits.
- iii. The term paper shall be evaluated by the course teacher.

15.11 Return of evaluated answer papers:

i. The evaluated answer papers of mid-semester shall be shown to the students after the examination. Discrepancies if any, in awarding marks, the student can approach the teacher concerned immediately for rectification. ii. The answer paper should be retained by the course teacher for 6 months or declaration of results by Pondicherry University, whichever is earlier and then disposed off.

16. COMPREHENSIVE QUALIFYING EXAMINATION

- 16.1 i. Only those postgraduate students who successfully complete the comprehensive qualifying examination shall be admitted to candidacy of the degree.
 - ii. The qualifying examination consists of written and oral examination in major subjects only and the students should be allowed after completion of 80 per cent of total course credit load including major and minor courses.
 - iii. The qualifying examination shall be conducted only in the major courses as per the norms given below:

Question paper setting	-	External
Evaluation of answer book	-	External
Qualifying marks	-	60 per cent
Viva Voce	-	External
Grading	-	Satisfactory/Not Satisfactory

16.2 Selection of examiner:

- i. The Head of the concerned PG Department shall send a panel of examiners for conducting the qualifying examination (Form 4). However, the University can draw its own panel of examiners.
- ii. The panel of examiners for qualifying examinations shall be given three months before the date of completion of the student's course work.

16.3 Written examination:

- i. Normally the qualifying examination shall be completed before the end of third semester of the postgraduate programme.
- ii. The controller of examination shall conduct the qualifying written examination
- iii. The written examination shall be conducted for major courses only.
- iv. The question paper for the written examination shall be of 3 hours duration and each question need not be restricted to any particular topic in a course but it should be a comprehensive of the syllabus of each course.
- v. The question paper pattern for the written examination is given below.

Part	Type of question	Number of questions	Number of questions to be answered	Mark per question	Total marks
А	Paragraph answers	7	5	5	25
В	Essay type answers	7	5	15	75
				TOTAL	100

16.4 **Oral examination**:

i. Only those students who secure 'SATISFACTORY' grade in written qualifying

examination shall be permitted to attend the oral qualifying examination

- ii. The advisory committee shall conduct the oral examination with one external examiner, who sets the question paper for the written qualifying examination.
- iii. The performance of the student(s) in the qualifying viva-voce examination shall be graded as "Satisfactory" or "Not satisfactory".
- iv. If the performance of the student is "Not Satisfactory" in the oral examination, he/she has to appear for the oral examination again.

165 **Communication of results of qualifying examination**:

- i. The Chairman of the advisory committee shall act as Chairman for the examination committee.
- ii. The Chairman of the advisory committee shall be responsible for communicating the results of the examination to the Controller of Examinations in the prescribed format (Form 5).

16.6 **Failure/absence in qualifying examination**:

- i. A student is permitted to write the qualifying examination only three times including the regular attempt.
- ii. A student who fails or absents in the comprehensive qualifying written/viva-voce examination shall apply to the University with the recommendation of the Chairman of the advisory committee, Head of the Department and the Dean for re-examination.
- iii. A student who applies for re-examination should attend written examination and viva-voce after paying the prescribed re-examination fee.
- iv. Re-examination shall not take place earlier than three months after the previous qualifying examination.
- v. If a student fails even in the second re-examination (third attempt), he/she cannot continue as a student in the University for Award of Master's degree in the University.
- vi. The research credits registered in the final semester shall not be evaluated unless he/she successfully completes the qualifying examination.

17. CREDIT SEMINAR

- 17.1 Seminar is compulsory for all the postgraduate students and each postgraduate student should register and present one seminar with 0+1 credit.
- 17.2 Registration of seminar credits is not allowed in the first semester.

17.3 Seminar topic:

- i. The seminar topic should be only from the major field and should not be related to the area of thesis title.
- ii. The seminar topics are to be assigned to the students by the Chairman at the beginning of the semester in which he/she registers seminar credits and the progress made by the student should be monitored.

17.4 **Evaluation of seminar**:

- i. The students should prepare a seminar paper after reviewing all the available literature and present the seminar after completion of 80 per cent attendance in the semester in the presence of the Advisory committee, staff and postgraduate students of the concerned department.
- ii. The circular on the presentation of the seminars by the postgraduate students may be sent to other departments to enable those interested to attend the same.
- iii. After carrying out the corrections/suggestions, the student should submit two copies of the seminar papers, one to the Chairman and the other to the department.
- iv. The performance of the student in the credit seminar has to be evaluated for 100 marks by the Advisory Committee. Grade Point may be given based on the following norms:

Particulars	Marks
Coverage of literature	40
Presentation	30
Use of audio-visual aids	10
Capacity to participate in discussion and answer the questions	20
TOTAL	100

- 17.5 The students who fail to present the seminar must be awarded 'F' grade and the student should again register the seminar credits and present the seminar in the subsequent semester. The minimum of 80 per cent attendance requirement for presenting the seminar after re-registration need not be insisted.
- 17.6 Presenting a seminar is a must for the award of the degree.

18. THESIS RESEARCH

18.1 Selection of topic:

- i. With the guidance of the advisory committee the students should identify the tentative area of research and include it in the plan of work.
- ii. The advisory committee should guide the students in selecting a specific topic in the identified research area and for preparing a detailed proposal. While selecting the topic for thesis research, the specialization and competency of teachers, thrust area identified by the department, external funded schemes operated in the department and also the aptitude of the student may be taken into consideration.
- iii. The topic for thesis research for the students of Master's programme should be of such a nature as to indicate a student's potentialities for conducting research and to train him in research.
- iv. The thesis shall be on a topic falling within the field of the major specialization and shall be the result of the student's own work.
- v. A certificate to this effect duly endorsed by the Chairman of the Advisory Committee shall accompany the thesis.

18.2 **Research proposal:**

- i. The research proposal has to be presented by the student in a meeting organized by the Head of the department to get the opinion/suggestions of the teachers of the department for improving it.
- ii. Three copies of the research proposal in the prescribed format (Form 3) should be sent to the Dean through the Head of the department for approval before the end of the semester in which the student has registered research credits for the first time or before taking up the field / laboratory experiments whichever is earlier.

18.3 **Evaluation of thesis research**:

- i. After assigning the research problem, for each semester the student has to submit a detailed programme of work to be carried out by him/her during the semester in the prescribed proforma (Proforma-1). After scrutiny and approval, a copy of the programme has to be given to the student for carrying out the work during the semester.
- ii. Attendance register must be maintained in the department for all the PG students to monitor whether the student has 80 per cent of attendance in research.
- iii. After completion of 80 per cent attendance for research and on or before the last day of the semester, the advisory committee should evaluate the progress of research work as per the approved programme and award 'SATISFACTORY or NOT SATISFACTORY' depending upon quantity and quality of work done by the student during the semester. The procedures of evaluating research credits under different situations are explained hereunder.
 - a. SITUATION I: The student has completed the research credits as per the approved programme and awarded 'SATISFACTORY' by the advisory committee. Under the said situation the student can be permitted to register fresh block of research credits in the subsequent semester. If the student is awarded 'NOT SATISFACTORY' he/she has to reregister the same block of research credits in the subsequent semester.
 - **b. SITUATION II**: If the student has not secured the minimum attendance of 80 percent, then the grade 'E' should be awarded. The student has to reregister the same block of research credits for which 'E' grade was awarded in the following semester with prior permission from the University. Until the completion of reregistered credits, the student should not be allowed to register for fresh block of research credits.
 - **c. SITUATION III**: The student could not complete the research work as per the approved programme of work for reasons beyond his/her control such as,
 - Failure of crop.
 - Non-incidence of pests or disease or lack of such necessary experimental conditions.
 - Non-availability of treatment materials like planting materials chemicals, *etc*.
 - Any other impeding/unfavorable situation for carrying out research.

Under the said situations III, Grade 'E' should be awarded. The student has to

reregister the same block of research credits for which 'E' grade was awarded in the following semester with prior permission from the University. Until the completion of re-registered credits, the student should not be allowed to register for fresh block of research credits.

- **d. SITUATION IV:** When the student failed to complete the work even in the 'Second time' registration, the student will be awarded '**NOT SATISFACTORY'** and he/she has to reregister the same block of research credits in the subsequent semester with the prior permission from the University.
- e. SITUATION V: If a student can not complete qualifying examination till the end of final semester, the research credits registered in the final semester shall not be evaluated unless he/she successfully completes the qualifying examination. The research credits registered by the student during the final semester shall be evaluated within 15 days from the date of declaration of result of the qualifying examination.
- f. SITUATION VI: If a student secures 'F' grade in one or more course(s) and can not complete the course(s) till the end of final semester, the research credits registered in the final semester shall not be evaluated unless he/she successfully completes the course(s) in which he/she secures 'F' grade. The research credits registered by the student in the final semester shall be evaluated within 15 days from the date of declaration of result of the failed course(s). If the student fails to complete the course even in 1+2 attempts, 'E' grade shall be awarded for the research credits registered in the final semester and the student has to re-register the same block of research credits along with the re-registration of failed courses, with the approval of the University
- 18.4 **Re-registration of research credits**: Students have to obtain prior permission of the University for re-registering the research credits. However, the University can permit the registration of research credit only three times. Permission to register for the fourth time shall be given only by the Academic Council.

19. SUBMISSION OF THESIS

- i. The research credits registered in the last semester of postgraduate programmes should be evaluated only at the time of the submission of thesis by the advisory. committee. Students can submit the thesis at the end of the final semester. The list of enclosures to be submitted along with the thesis is furnished in *Annexure-2*.
- ii. If a postgraduate student has completed the thesis before the closure of the final semester, the Chairman can convene the advisory committee meeting and take decision on the submission of the thesis provided the student satisfies 80 per cent attendance requirement.
- iii. Copy of the thesis to be sent for evaluation should be submitted in paper pack.
- iv. After incorporating the suggestions of the examiners and those received at the time of viva-voce, the thesis should be submitted to the College/university in hard bound copies (four copies) and soft copies (in pdf format) in CDs (two copies).
- v. During submission of thesis for external evaluation, it is mandatory to enclose

certificates for plagiarism check and reference management (Proforma-12). Maximum of 20% plagiarism is permitted.

19.1 **Grace period:**

- i. Students can avail a grace period upto three months for submission of thesis after the closure of final semester by paying prescribed fine to the University.
- ii. If a student is not able to submit the thesis within three months grace period, the student has to re-register the credits in the forthcoming semester.
- iii. The student who re-register the credits after availing the grace period will not be permitted to avail grace period for the second time.
- iv. The Heads of the Departments can sanction the grace period based on the recommendation of advisory committee and a copy of the permission letter along with the receipt for payment of fine should accompany the thesis while submission.
- 19.2 **Re-registration and submission of thesis:** The minimum of 80 per cent attendance requirement for submitting the thesis after re-registration need not be insisted for those students who have fulfilled the minimum academic and residential requirement *i.e.* 2 years (4 semesters) and completed the minimum credit requirements with 80 per cent attendance.
- 19.3 **Publication of articles:** Part of thesis may also be published in advance with the permission of the Chairman. If any part is published, the fact should be indicated in the certificate given by the Chairman that the work had been published in part/ full in any referred scientific or popular journals, proceedings, *etc*.

20 EVALUATION OF THESIS

- 20.1 The thesis submitted in partial fulfillment of a Master's degree shall be evaluated by an external examiner nominated by the Controller of Examinations. However, the Dean can send panel of three examiners (Form 6).
- 20.2 An oral examination will be conducted by the Advisory Committee after the thesis is recommended by the external examiner and carrying out the corrections/suggestions made by the external examiner by the student.
- 20.3 The Chairman of the advisory committee shall communicate the date of final thesis viva-voce examination to the student and advisory committee members. The thesis final viva-voce examination shall be completed within three months from the date of receipt of the report from the external examiner.
- 20.4 The Chairman shall send the recommendations of the advisory committee (Form 7) along with necessary certificate/documents in duplicate to the University.
- 20.5 i. In case, the External examiner does not recommend the thesis for the award of the degree, the advisory committee may send their recommendation for scrutiny of the thesis by another external examiner, through the Dean to Controller of Examinations within one month from the date of receipt of the thesis. The Controller of Examinations may, on the recommendation of the advisory committee and Dean, refer the thesis for scrutiny and independent judgment to a second external expert chosen by him.

- ii. If the second external expert recommends the thesis for acceptance, this recommendation may be accepted.
- iii. If the second examiner also does not recommend the thesis for acceptance, the degree shall not be awarded.

21 REVISION OF THESIS

- 21.1 If an examiner recommends for revision of thesis the following norms will be adopted.
 - i. For revision of draft, the thesis should be resubmitted after a minimum of one month from the date of communication from the Dean.
 - ii. If the revision is recommended for repeating lab experiments, field trial *etc*, resubmission must be after a minimum period of six months.
- 21.2 At the time of resubmission, the advisory committee should give a certificate for having carried out the corrections/recommendations. The resubmitted copies of thesis should have incorporated the necessary corrections as indicated by the external examiners.

22 FAILURE TO APPEAR FOR FINAL VIVA/NON-SUBMISSION OF THESIS AFTER VIVA

If a candidate fails to appear before the examining committee for final thesis vivavoce, on the date fixed by the Chairman the following are the time-frame and penalty.

- 22.1 The thesis viva-voce must be completed within **five years from the date of first registration** for Master's programmes. The prescribed penalty/fine must be charged to the candidate.
- 22.2 After successful completion of thesis final viva voce, if a student fails to submit the corrected version of the thesis within 15 days he/she will be levied a fine at the time of sending the proposal for result declaration.

23 MALPRACTICES IN EXAMINATION AND MISCONDUCT OF STUDENTS

- 23.1 The Dean of the College shall be responsible for dealing all cases of unfair means by students in writing records, term papers and mid-semester examinations.
- 23.2 In case of final theory and final practical examination, the cases of malpractice will be dealt as per Chapter XV (A) of the Academic Ordinance of the University.
- 23.3 **Ragging rules:** Students found involved in ragging will be dealt as per the orders of the Supreme Court of India. The matter shall be reported to the University.
- 23.4 **Unlawful activities:** In case of students found involved in any unlawful activities either within or outside the Hostel/College Campus, besides, expulsion both from the Hostel and College at the discretion of the Dean, the matter will be reported to the Police of the jurisdiction to be dealt with, in accordance with the appropriate law in force. The matter shall be reported to the University.
- 24 The schedule for the important records to be sent to the Dean is furnished below and should be followed strictly so as to get back the above academic reports in time for maintenance in the students file.

SI. No.	Particulars	Time Schedule	
1	Formation of advisory committee (Form 1)	Within one month of the commencement of first semester	
2	Plan of course work (Form 2)	Before the commencement of mid semester examination in the first semester	
3	Programme of research work (Form 3)	Before the end of the semester in which the student registers the research credit for the first time or the commencement of the research work whichever is earlier.	
4	Proposal for qualifying examination (Form 4)	Two months before the completion of the course work.	
5	Qualifying examination result (Form 5)	Immediately	
6	Panel of external examiners for thesis evaluation (Form 6)	Three months before the probable date of submission of thesis	
7	Final viva-voce result (Form 7)	Fifteen days from the examination	

25 AWARD OF DEGREE AND ISSUE OF TRANSCRIPT CARD

- 25.1 **Eligibility for the Award of the Degree:** The successful completion of all the prescribed courses included in the Curricula and Syllabi shall be minimum requirement for the award of the Degree.
- 25.2 **Class Ranking**: In calculation of Class equivalent for OGPA the following classification will be adopted. First class with Distinction and first class shall be awarded to those students who have completed the course without arrear and all others shall be awarded second class

OGPA	Class
9.00 and above	First class with Distinction
8.00 to 8.99	First class
7.00 to 7.99	Second Class

25.3 **Percentage conversion**: For obtaining the percentage equivalent to the OGPA, the OGPA secured by the student shall be multiplied by 10.

25.4 Transcript card:

- i. The Transcript card shall contain entry of all the courses and the Grade Points and OGPA obtained by the candidates indicating the number of times appeared. This will have to be prepared for all the students by the Controller of Examinations.
- ii. For preparation of Transcript card, the Dean should send recent passport size photograph of the students along with filled in proforma and the prescribed fee.

26 **REMOVAL OF DIFFICULTIES:**

26.1 If any difficulty arises in giving effect to the provisions of these regulations, the Vice-Chancellor may issue necessary orders which appear to him to be necessary or expedient for removing the difficulty.

- 26.2 Every order issued by the Vice-Chancellor under this provision shall be laid before the Academic Council of the University in the next meeting after the issuance.
- 26.3 Not-withstanding anything contained in the regulations, the Board of Studies or Academic Council reserve the right to make changes whenever necessary.

27. REGULATIONS GOVERNED BY PAJANCOA & RI

27.1 ADMISSION

27.1.1 Application for admission:

- i. Application for admission shall be made in the prescribed form to be downloaded from the website of the college (<u>www.pajancoa.ac.in</u>) after notification is issued to this effect.
- ii. The admissions shall be regulated and made in accordance with the admission rules and regulations in force.
- iii. Candidates seeking admission to the various Postgraduate degree courses are permitted to apply for only two subjects. Separate applications should be used for each course.

27.1.2 Admission procedure:

- i. The admission is based on the merit category of the candidate and availability of vacancies at the time of counseling.
- ii. All admissions made by this Institute are provisional and subject to the approval of the University.
- iii. The candidates who have offered admission should report to the college on or before the due date mentioned failing which their right of admission is forfeited

27.2 FEE STRUCTURE

- 27.2.1 Fee structure is being revised every year with 10% fee hike. Lodging fees and charges for electricity, water and computer are revised based on the requirements and power tariff prevailing from time to time.
- 27.2.2 In the case of new admissions, the fees for the first semester should be paid at the time of admission.
- 27.2.3 For the remaining semesters, the fees should be paid on the date of registration of the semester.
- 27.2.4 Candidates who discontinue after admission are not eligible for refund of fees except caution money deposit.
- 27.2.5 In case of a student who re-registers with junior batch, he/she has to pay the semester fess applicable to the junior batch in which he/she registers, besides the re-registration fee.

27.3 REGISTRATION

27.3.1 All newly admitted candidates should register during the first semester of the programme. A candidate admitted to the Postgraduate programme should report to the Head of the Department concerned on the date of registration. It is the

responsibility of the candidate to register the courses in person on the due date prescribed for the purpose.

- 27.3.2 **In ABSENTIA** registration will not be permitted on any circumstances.
- 27.3.3 The Head of the Department and the PG coordinator shall help the student in selecting the courses for registration.
- 27.3.4 Admitted candidates shall register with the respective Department at the beginning of each semester and this should be completed within two working days.

27.3.5 Late registration:

- i. Late registration is permitted by the Dean of college within seven working days from the commencement of the semester provided the prescribed late registration fee is paid before registration.
- ii. Registration beyond seven working days is not allowed except for new entrants who are admitted late due to administrative reasons in the first semester.

27.3.6 Registration cards:

- i. A student shall register the courses offered in a semester by writing all the courses in registration card in quadruplicate. The format of registration card is given in *Annexure-4*.
- ii. The Chairman, PG coordinator and Head of the Department are responsible to furnish the registration particulars of the students with their signature in the Registration card to the Dean.
- iii. The Dean shall approve the registration cards.
- iv. The approved registration cards shall be maintained by the Dean, PG coordinator, Chairman and the student concerned.
- v. The list of courses registered by the students in each semester shall be sent by the Dean to the Controller of Examinations/University for preparation of Report Cards
- 27.3.7 The mess dues clearance certificate has to be produced by the student at the time of registration.

27.4 ARREAR EXAMINATION:

- i. The prescribed arrear examination fee should be paid on or before the specified date.
- ii. The Registration for the arrear examination shall be done on the date specified by the Dean. Each registration is considered as an attempt even if the student is absent for the examination.

27.5 QUALIFYING EXAMINATION

The Heads of departments will monitor and coordinate the conduct of both the written and oral qualifying examinations.

27.6 SUBMISSION OF THESIS

The research credits registered in the last semester of postgraduate programmes

should be evaluated only at the time of the submission of thesis by the advisory committee. Students can submit the thesis at the end of the final semester. The list of enclosures to be submitted along with the thesis is furnished in *Annexure-5*.

27.7 REVISION OF THESIS

The prescribed fine for late submission of revised thesis may be collected from the students submitting thesis beyond the due date with the recommendation of the Chairman. The Dean shall ensure that the delay is due to the fault of the student.

27.8. MERIT SCHOLARSHIP/RESEARCH ASSISTANTSHIP

- 27.8.1 PAJANCOA & RI PG fellowship shall be awarded to all the students who are admitted into the Masters programme based on allotment of Government fund. The PG students should be a resident of PAJANCOA & RI hostels. The award of PG fellowship is governed by the approved PG fellowship rules.
- 27.8.2 The Dean shall call for applications and sanction the scholarship every year.
- 27.8.3 The students availing any scholarship/fellowship are permitted to switch over to other fellowship/scholarship only one time during the course of study.

27.8.4 Student SRF/JRF:

- i. The selection of student SRF/JRF in external funded schemes will be made by the existing committee members for selection of regular SRF/JRF.
- ii. The PG coordinator of the concerned department will be an additional member of the committee.
- iii. The panel of names after the selection has to be sent to the Dean for approval in the prescribed Proforma.
- iv. If a student SRF/JRF discontinues before submitting the thesis or switch over to other fellowship/scholarship, the amount already paid has to be recovered in full in one lump sum with 6% penal interest.

27.9 RECOGNITION OF POSTGRADUATE TEACHERS

- 27.9.1 The Dean normally recognizes teachers for offering courses and guiding the students of Master's programme based on the request of teachers and the recommendation of Head of the department.
- 27.9.2 The recognized PG teachers shall offer courses to masters students as required by the concerned Heads of departments, normally, in their own field of specialization unless extra-ordinary circumstances demand for offering other courses.
- 27.9.3 All the recognized guides for Master's programme are competent to guide research work of Master's degree students in their own fields of specialization. The Heads of departments shall assign students to the recognized guides taking into account their specialization. The students should be uniformly distributed instead of all of them taking research topics in one or two specialized branches in the department.
- 27.9.4 **Teachers for Master's programme:** The following faculty shall be recognized as PG teachers for Master's programme

- i. Professors
- ii. Associate Professors
- iii. Assistant Professors: Persons having Ph.D. degree with one year of active experience in the concerned field (or) Persons having a Master's degree with three years of active experience in the field. In case of contingencies, like start of new PG programme, persons having Ph.D. degree in the concerned field may be recognized as PG Teacher.
- 27.9.5 **Guides for Masters programme:** PG Teachers after handling PG courses in two semesters are eligible to guide M. Sc. students. In case of contingencies, like start of new PG programme, persons having Ph.D. degree in the concerned field may be recognized as PG Guide.
- 27.9.6 The Heads of departments will forward the proposals based on the qualification and experience of the teacher as given above. The proposals can be sent when there is acute need for teachers/guide in the prescribed format, given in the *Annexure-6*.
- 27.9.7 While forwarding the application the Head of the Department should consider the seniority of the teacher, number of courses handled and number of research schemes operated.

27.10 GUIDELINES FOR HEADS OF THE DEPARTMENTS IN MONITORING PROGRESS OF POSTGRADUATE STUDENTS

27.10.1 **Student records:** The "Individual student" file (clip file) containing all the academic records of the student concerned with students bio-data shall be maintained by the PG coordinator on behalf of the Institution. In each file a sheet containing the following information has to be attached.

i)	Date of registration	:
ii)	Date of qualifying examination	:
iii)	Due date for thesis submission	:
iv)	Date of submission of thesis	:
v)	Date of viva-voce	:
vi)	Remarks	:

27.10.2 The activities listed out in the following table must be meticulously taken care by the Professor and Head of the Department concerned

SI.No.	Particulars	Time Schedule	
1	List of courses to be offered	A week before the commencement of each	
	along with time table	semester	
2	Course registration particulars	Within 10 working days from the date of	
		commencement of each semester	
3	Time table for mid-semester	A week before the scheduled date for the	
	examinations	examinations notified in the academic	
		calendar	
4	Mark lists after completing	Within 10 days from the date of conduct of	
	examinations	examinations	
5.	Class grade chart	Within 7 days from the date of closure of	
		each semester	

- 27.10.3 The time table for various examinations and evaluations of research credits should be prepared in advance as indicated in the academic calendar of semester concerned and such dates already fixed should not be postponed or changed subsequently.
- 27.10.4 The Heads of the Departments should monitor the progress of the postgraduate students. Each department should maintain a list of thesis produced so far with the abstract of the same in both hard and soft copies.

Form – 1 PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICUL/TURE AND RESEARCH INSTITUTE, KARAIKAL – 609 603

FORMATION OF ADVISORY COMMITTEE

(To be sent in triplicate within one month from the commencement of First semester)

- Name of the student :
 Registration No. :
 Degree :
 Subject :
- 5. Advisory committee :

SI.	Advisory	Name, Designation and	Date of	Signature
No.	Committee	Department	Retirement	
1	Chairman			
2	Member 1			
	Member 2			
3	Additional			
	Member			

:

6. Reason for additional member

Signature of the student

PG coordinator

Head of the Department

DEAN

* Additional members may be included only in the allied faculty related to thesis research with full justification at the time of sending proposals (Programme of research) to the Dean for approval.

Form – 1a PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARAIKAL – 609 603

CHANGE IN ADVISORY COMMITTEE (To be sent in triplicate)

1.Name of the student:2.Registration No.:3.Degree:4.Subject:5.Proposed change:

		Name and designation	Date of retirement	Signature
a.	Existing Chairman/ member			
b.	Proposed Chairman/ member			

6. Reasons for change :

Signature of the student

Chairman of the Advisory Committee

PG coordinator

Head of the Department

DEAN

Form – 2 PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICUL/TURE AND RESEARCH INSTITUTE, KARAIKAL – 609 603

PLAN OF COURSE WORK

(To be sent in triplicate before the commencement of mid semester examinations in the first semester)

Name of the student
 Registration No.
 Degree
 Subject
 Course Programme

S. No	Course No	Course Title	Credit Hour
		MAJOR COURSES	
		MINOR COURSES	
		SUPPORTING COURSES	
		NON-CREDIT COURSES	
		SEMINAR	
		RESEARCH	
		TOTAL	

:

6. Tentative area of research (indicate the major field of specialization)

Signature of the student

APPROVAL OF THE ADVISORY COMMITTEE

Advisory committee	Name	Signature
Chairman		
Members	1.	
	2.	
	3.	

PG coordinator

Head of the Department

Form – 3 PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARAIKAL – 609 603

PROGRAMME OF RESEARCH WORK

(To be sent in triplicate before the end of the semester in which the student registers research credit for the first time or the commencement of research work whichever is earlier)

1.	Name	:
2.	Registration No.	:
3.	Degree	:
4.	Subject	:
5.	Date of joining	:
6.	Title of the research project	:
7.	Objective(s)	:
8.	Duration	:
9.	Location (campus/station)	:
10.	Review of work done	:
11.	Broad outline of work/methodology	:
12.	Semester wise break up of work	:

Signature of the student

APPROVAL OF THE ADVISORY COMMITTEE

Advisory committee	Name	Signature
Chairman		
Members	1.	
	2.	
	3.	

PG coordinator

Head of the Department

Form – 3a PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICUL/TURE AND RESEARCH INSTITUTE, KARAIKAL – 609 603

CHANGE IN PROGRAMME OF RESEARCH

(To be sent in triplicate)

Name	:
Registration No.	:
Degree	:
Subject	:
Reason for change	:
Proposed change in the approved	: programme of research
Number of credits completed so far	: under the approved programme
a) Whether already earned credits are	: to be retained or to be deleted
b) If retained, justification	:
	Registration No. Degree Subject Reason for change Proposed change in the approved Number of credits completed so far a) Whether already earned credits are

Signature of the student

APPROVAL OF THE ADVISORY COMMITTEE

Advisory committee	Name	Signature
Chairman		
Members	1.	
	2.	
	3.	

PG coordinator

Head of the Department

Form – 4 PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICUL/TURE AND RESEARCH INSTITUTE, KARAIKAL – 609 603

PROPOSAL OF QUALIFYING EXAMINATION

(To be sent in triplicate)

1.	Name of the Department	:
2.	Degree	:
3.	Subject	:
4.	Whether all the courses have been completed	:
5.	Number of credits completed	:
6.	Whether the students have an OGPA of not less than 7.00/10.00	:

 List of PG students appearing for qualifying examination

Sl. No.	Name	Registration No.	OGPA

:

8. Panel of External examiners :

SI. No.	Name and Designation	Address	Area of specialization
1.			
2.			
3.			

:

9. Remarks

PG coordinator

Head of the Department

DEAN

Form – 5 PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARAIKAL – 609 603

COMMUNICATION OF RESULT OF QUALIFYING EXAMINATION

(To be sent in triplicate)

- Name of the student 1. : 2. **Registration No.** : 3. Degree • 4. Subject : 5. Date of examination : 6. Date of previous examination : (only in case of re-examination)
- 7. Result (Successful/ Not successful*) :

(*) to be written by the external examiner

EXAMINATION COMMITTEE

	Name in block letters	Signature
Chairman		
Members	1.	
	2.	
	3.	
External Examiner		

Signature of Chairman with name and designation

PG coordinator

Head of the Department

DEAN

Form – 6 PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARAIKAL – 609 603

PROPOSAL OF EXTERNAL EXAMINERS FOR THESIS EVALUATION (To be sent in duplicate in Confidential cover)

:

:

:

:

:

- 1. Name of the student :
- 2. Registration No.
- 3. Degree
- 4. Subject
- 5. Thesis title :
- 6. Name of the Chairman :
- 7. Panel of external examiners*

SI. No.	Name and Designation	Address	Area of specialization
1.			
2.			
3.			

*Three external examiners should be given

8. Remarks

.

Signature of the Chairman of the advisory committee

Form – 7 PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARAIKAL – 609 603

RESULT OF FINAL THESIS VIVA-VOCE EXAMINATION

(To be sent in duplicate)

1.	Name of the student	:	
2.	Registration No.	:	
3.	Degree	:	
4.	Subject	:	
5.	Thesis title as in final copy of the thesis	:	
6.	Date and time of <i>viva-voce</i>	:	
7.	Particulars of the External examiner(s)	:	

who has/have evaluated the thesis

Name and Designation of the External Examiner	Remarks of the External Examiner
	RECOMMENDED /
	RECOMMENDED FOR REVISION
	/ NOT RECOMMENDED

8. Recommendation of the Examining committee present at the time of final *viva voce* examination:

a. Recommends/ does not recommend unanimously the award of degree

b. The performance of the candidate in final *viva voce* is assessed as ______(very good/ good/ satisfactory/ not satisfactory)

SI. No.	Capacity of examiner	Name in block letters	Signature
1.	Chairman/Co-opted Chairman*		
2.	Member 1.		
3.	2.		
4.	Additional member		
5.	Co-opted member*		

* If co-opted in the absence of Chairman/Member

The original report(s) from the external examiner(s) is/ are enclosed

Head of the Department

Chairman of the Examining committee / Advisory committee with designation

DETAILS ON FEE TO BE PAID BY THE STUDENT

Sl. No.	Particulars	Amount (Rs.)
1.	Late Registration fee	1000
2.	Missing mid-semester examination fee (per course)	1000
3.	Re-registration fee with juniors	1000
4.	Duplicate Hall ticket	200
5.	Fee for Transfer Certificate and Conduct Certificate	200
6.	Re-examination fee for qualifying exam	5000
7.	Fee for availing grace period for submission of thesis	
	a) Upto one month	1000
	b) Up to three months	2500
8.	Penalty for re-viva voce examination for thesis	5000
9.	Fee for late submission of thesis after final viva-voce	5000
10.	Examination fee (per course)	*
11.	Arrear Examination fee (per course)	*
12.	Revaluation fee (per course)	*
13.	Re-totaling fee (per course)	*
14.	Fee for Provisional Degree Certificate	*
15.	Fee for Transcript Card	*
16.	Fee for Degree Certificate	*
17.	Fee for Migration Certificate	*

(Other than admission fee and semester fee)

* As fixed by Pondicherry University from time to time

Annexure – 2

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARAIKAL – 609 603

STUDENT REGISTRATION CARD - PG

Name of the student	Academic Year	
Registration No.	Semester	
Degree Programme	Date of Registration	
Year of Admission	Date of Commencement	

COURSES REGISTERED

SI. No.	Course Code	Course Title	Credit Hours	Remarks
		TOTAL CREDIT HOURS REGISTERED		

Signature of the Student	Signature of the Chairman	Signature of the Head of the Department	Coordinator of Examinations

APPROVED BY

DEAN PAJANCOA&RI, KARAIKAL

Annexure-3

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

LIST OF ENCLOSURES TO BE SUBMITTED ALONG WITH THESIS

A. At the time of sending thesis for External Evaluation:

To be submitted to the university

- 1. One copy of abstract of thesis
- 2. One copy of the summary of research finding in English (within one page)
- 3. One copy of the summary of research finding in Tamil (within one page)
- 4. One page abstract of thesis with key words
- 5. Result of comprehensive qualifying examination
- 6. Permission and fee receipt for availing grace period, if any.

To be submitted to the college along with above list

- 7. Clearance certificates from Hostel
- 8. Clearance certificates from Library
- 9. Clearance certificates from Department
- 10. Clearance certificates from Staff advisor
- 11. Clearance certificates from Physical Education
- 12. Approved registration cards (One set)
- 13. Report cards (one set)
- 14. Course completion certificate (signed by Chairman and HOD)
- 15. Attendance Certificate

B. At the time of submission after final viva-voce:

- 1. Report of the final thesis viva voce examination (To be sent in duplicate)
- 2. External Examiners thesis evaluation report (Two copies original + Xerox)
- 3. Certificate for having carried out the suggestions of the external examiner and advisory committee
- 4. Thesis in hard bound copy One Number.
- 5. Soft copy the thesis in CD (cover to cover in PDF format) Two Number.

Annexure - 4

PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

PROPOSAL FOR RECOGNITION OF TEACHERS FOR TEACHING/GUIDING PG STUDENTS

1. Particulars of the teacher seeking recognition

	a.	Name of the teacher	:	
	b.	Date of birth of the teacher	:	
	c.	Designation & present official address of the teacher	:	
	d.	Date of joining service in the entry cadre	:	
	e.	Academic qualifications		
		Date of acquiring Bachelor's Degree	:	
		Date of acquiring Master's Degree	:	
		Date of acquiring Ph.D degree	:	
	f.	Total service as on the date of this proposal		
		(excluding extraordinary leave)	:	
	g.	Date of retirement	:	
2.		Recognition proposal submitted for (tick any one)	a.	Recognition as teacher for Masters Programme
			b.	Recognition as Guide for Masters Programme
3.		Teaching experience as on the date of Application		
		a. No. of UG courses offered	:	
		c. No. of M.Sc courses offered	:	

Signature of the teacher with date

4.	Particulars to be furnished by Head of the Department No. of existing recognized teachers/guides			
	pertaining to this proposal in your department	:		
	Justification for additional requirement of teachers/guide	:		

Signature of the Head of Department

Approval of the Dean

Proforma – 1

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

PROFORMA FOR REGISTRATION OF RESEARCH CREDITS

PART- A : PROGRAMME

	Semester : I / II Year :		Date of registration :
1.	Name of the student	:	
2.	Registration No.		
3.	Total research credits completed so for	:	
4.	Research credits registered during the semester	:	
5.	Programme of work for this semester (list out the items of research work to be undertaken during the semester) i)	:	
	ii)		

- iii)
- iv)

APPROVAL OF THE ADVISORY COMMITTEE

Advisory committee	Name	Signature
Chairman		
Members	1.	
	2.	
	3.	

(Approval may be accorded within 10 days of registration)

PROFORMA FOR EVALUATION OF RESEARCH CREDITS

PART - B EVALUATION

(Evaluation to be done before the closure of semester)

:

Date of closure of semester :

Date of evaluation

- Whether the research work has been : carried out as per the approved programme
- 2. If there is deviation specify the reasons :
- 3. Performance * :

(*) Performance may be indicated as SATISFACTORY /NOT SATISFACTORY

APPROVAL OF THE ADVISORY COMMITTEE

Advisory committee	Name	Signature
Chairman		
Members	1.	
	2.	
	3.	

PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

PERMISSION FOR LATE REGISTRATION

1.	Name of the student	:	
2.	Registration No.	:	
3.	Degree	:	
4.	Department	:	
5.	Semester and Academic year	:	
6.	Date of commencement	:	
7.	Date of registration without fine	:	
8.	Last date for registration with fine	:	
9.	Date on which registration is sought	:	
10.	Reason	:	
11.	Signature of the student	:	

12. Remarks and recommendation of the : Chairman

Signature of the Chairman

PG Coordinator

Head of the department

DEAN

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

WILLINGNESS TO BE GIVEN BY THE STUDENTS TO AVAIL FELLOWSHIP FROM EXTERNALLY FUNDED SCHEMES

1.	Name of the student	:
2.	Registration No.	:
3.	Degree	:
4.	Subject	:
5.	OGPA of Bachelor degree	:
6.	Name of the Chairman	:
7.	Discipline/Department	:
8.	Thesis topic, if allotted	:
9.	Current semester and year in which studying	:
10.	Whether all the course works have been completed , if not indicate the	:

pending courses with credit loads

Undertaking by the student:

- i. I am willing to avail the proposed fellowship under the scheme entitled____
- ii. If I leave in the middle of the tenure of the fellowship, I am willing to repay the fellowship availed with 6% penal interest or any levy/fine imposed by the College/University.
- iii. I am fully aware that in case of campus transfer due the award of the fellowship that I have to loose the research credits already registered.
- iv. I am fully aware that there is no guarantee for the continuation of the courses, which I currently undergo, in the other campus to which I am likely to be transferred.
- v. I am willing to abide by all the rules and regulations laid down by the College/University in this regard.

Date:

Signature of Student

Chairman of the Advisory Committee

Head of the Department

PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

ALLOTMENT OF STUDENTS UNDER JRF/SRF STUDENT FELLOWSHIP

(To be submitted to the Dean)

1.	Title of the scheme	:	
2.	Location of the scheme (Department)	:	
3.	Date of sanction of the scheme	:	
4.	Period of the scheme	:	
5.	Type of fellowship	:	JRF/SRF
6.	Period of fellowship (only for the period of research credits registered)	:	
7.	Amount of fellowship	:	Rsp.m
8.	Amount of contingent grant	:	Rsp.a.
9.	Amount of T.A. provided	:	Rsp.a.
10.a.	Whether the technical programme submitted by the student to Dean is the same as envisaged in the scheme proposal	:	Yes / No
b.	If not, whether the revised programme of research is submitted (If yes, date of approval by the Dean)	:	
11.	No. of research credit(s) completed so far by the proposed fellowship awardees (student)	:	
12.	Whether the credits earned earlier are to be retained or to be cancelled?	:	
13.	Whether funds received	:	Yes / No
14.	Name of the student(s) & ID.No.	:	
15.	Number of semesters for which fellowship may be sanctioned	:	
16.	Can the fellowship be sanctioned for grace period also.	:	Yes / No

Principal Investigator Head of the Department Dean

List of Enclosures

- 1. Copy of concurrence of the sponsor of the sponsor to avail student fellowship
- 2. Copy of administrative sanction by Dean
- 3. Student's willingness and undertaking

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

SPONSOR'S CONCURRENCE (PROFORMA)

1.	Title of the scheme	:	
2.	Location of the scheme (Department)	:	
3. a.	Name & Designation of the PI	:	
b.	Name and designation of the Co-PI	:	
4.	Type of fellowship	:	JRF/SRF
5.	Period of fellowship	:	
a.	Indicate the period of fellowship to be awarded	:	
b.	Amount of fellowship	:	Rsp.m.
c.	Amount of contingent grant	:	Rsp.a.
d.	Amount of T.A. Provided	:	Rsp.a.
e.	Whether Institutional charges paid	:	Yes/No Rs

Signature of the Sponsor

To The Dean PAJANCOA&RI Karaikal – 609 603

Proforma-6

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

DEPARTMENT OF _____

COURSE COMPLETION CERTIFICATE

This is to certify	that Thiru	ı./Selvi/Tn	nt						
Registration No		has	completed	all	the	course	and	resea	arch
credit requirements	on				for	the	awa	ard	of
		de	egree.						

Professor and Head

Signature of the Chairman (with Name and designation)

PONDICHERRY UNIVERSITY

PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

JUSTIFICATION FOR LATE SUBMISSION OF THESIS (if applicable)

1.	Name of the student	:	
2.	I.D. No.	:	
3.	Degree	:	
4.	Subject	:	
5.	Date of first registration for the degree	:	
6.	Number of semesters for which the candidate could not register	:	
7.	Reason for not registering and continuing the study	:	
8.	Period of delay in submission of thesis	:	
9.	Period lost due to transfer/ill health	:	
10.	Date of submission of thesis	:	
11.	Specific remarks and recommendation of the Chairman	:	Signature of the student
			Signature of the Chairman with designation
12.	Specific remarks and recommendation of the Head of department	:	
			Signature of the Head
13.	Approval of the Dean	:	
			Signature of the Dean

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

PROFORMA FOR EVALUATION OF THESIS

Nam	e of the degree programme:		·
1.	Name and Designation of the examiner	:	
2.	Address of the Examiner	:	
	Telephone/Mobile Fax e-mail	:	
3.	Name of the candidate	:	
4.	Registration No.	:	
5.	Title of the thesis	:	
6.	Date of receipt of the thesis copy	:	
7.	Date of despatch of the detailed report and thesis by the examiner to the Dean	:	
8.	Examiner's recommendations choosing one of the following based on quality of thesis	:	a. Recommended for award b. Recommended for revision
9.	Please state whether a list of questions if any to be asked at the viva-voce examination (Questions to be attached)	:	
	Date : Official Seal :		Signature of the Examiner

<u>Note</u> : Please enclose a detailed report in duplicate duly signed by you giving the merits and demerits of the thesis on the choice of problem, review of literature, methods followed, results and discussion etc.

Proforma-9

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

DEPARTMENT OF _____

CERTIFICATE FOR HAVING CARRIED OUT THE SUGGESTIONS OF THE EXTERNAL EXAMINER AND ADVISORY COMMITTEE

(To be enclosed along with result of the final viva voce examination)

Certified that Thiru/Selvi/Tmt _____

Registration No. ______ has carried out all the corrections and suggestions as pointed out by the external examiners(s) and the advisory committee and has

submitted **FOUR** copies of his/her M.Sc. thesis in hard bound cover and **TWO** soft copies

of thesis in PDF format in CDs.

Head of the department

Signature of the Chairman with Name and designation

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

PROFORMA FOR OBTAINING PERMISSION TO PRESENT PAPERS IN SEMINAR/SYMPOSIA/TRAINING

(To be sent in triplicate)

1.	Name of the student		
2.	Registration No.	•	
	-		
3.	Department & College	•	
4.	Name of the Chairman with designation	:	
5.	Whether course work has been completed?		
6.	Title of paper/poster to be presented	:	
	(enclose copy)		
7. a.	Name of the seminar/symposium	:	
b.	Venue	:	
с.	Dates(From-To)	:	
8.	Period of absence (in days) inclusive of	:	
	travel time		
9.	Whether the paper was sent through	:	
	proper channel (copy to be enclosed)		
10.	Cost of travel & registration fee borne by	:	
	the student himself (or) supported by the		
	scheme in which he is drawing		
	fellowship?		
Date:			Signature of the
Student			
Judent			

Specific Recommendations:

Chairman

Professor and Head

PERMISSION TO ATTEND THE SEMINAR/SYMPOSIA

(to be issued by the Dean)

- 1. Permitted without any financial commitment to the College/ University / Not permitted
- 2. Period of absence from to days) is to be treated as duty and can be counted for attendance.
- 3. Period of absence from ______ to _____ (____days) is not treated as duty and cannot be counted for attendance.
- 4. The student should submit a report to the Dean, within 3 days after his return.

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL - 609 603

APPLICATION FOR ISSUE OF CONDUCT AND TRANSFER CERTIFICATES

(To be submitted by the student with the recommendation of the Chairman/Head)

1.	Name of the student	:
2.	Registration No.	:
3.	Name of the Chairman	:
4.	Designation of the Chairman	:
5.	Name of the course undergone	:
6.	Year of joining course	:
7.	Year of leaving the course	:
8.	Whether copy of the PC enclosed	:
9.	Whether original clearance certificate from warden enclosed	:

Date:

Signature of the Student

Recommendations:

Certified that the conduct and characters of Mr/Ms.

were ______ during the period of his/her studies. The certificates may be issued accordingly.

Chairman

PG Co-ordinator Professor & Head

Proforma-12

PONDICHERRY UNIVERSITY PANDIT JAWAHARLAL NEHRU COLLEGE OF AGRICULTURE AND RESEARCH INSTITUTE, KARIAKAL – 609 603

CERTIFICATE FOR HAVING CARRIED OUT PLAGIARISM CHECK

1	Name of the Student	
2	Registration Number	
3	Degree	
4	Title of the Thesis	
5	Name of the Chairman	
6	Total Word Count in the Document	
7	Initial Submission	Yes / No
	If No	Provide the number of times plagiarism checked along with their plagiarism percent
8	Date of Submission	

Signature of the Student

Signature of the Chairman/Chairperson

Signature of the Head of the Department

COURSE CURRICULA AND SYLLABI

DESCRIPTION OF TERMINOLOGIES

Major Course	The subject of Department or discipline in which the student takes admission. Among the listed courses, the core courses compulsorily to be registered shall be given '*' mark
Minor Course	The course closely related to a student's major subject
Supporting Course	The course not related to the major course. It could be any course considered relevant for student's research work or necessary for building his/her overall competence
Common course	Course which is compulsorily registered by the postgraduate student for the completion of postgraduate degree programme. The marks obtained by the student in a common course will also be taken into account for calculating OGPA

Credit Requirements

	Particulars		Credits
(i)	Course Work		
	Major courses		20
	Minor courses		08
	Supporting courses		06
	Common courses		05
	Seminar		01
(ii)	Thesis Research		30
		TOTAL	70

COMMON COURSES

SI No.	Course Code	Course Title	Credits
1	PGS 501	Library and Information Services	0+1
2	PGS 502	Technical Writing and Communication Skill	0+1
3	PGS 503	Intellectual Property and its Management in Agriculture	1+0
4	PGS 504	Basic Concepts in Laboratory Techniques	0+1
5	PGS 505	Agricultural Research, Research Ethics and Rural Development Programmes	1+0

PGS 501 LIBRARY AND INFORMATION SERVICES 0+1

AIM OF THE COURSE

To equip the library users with skills, to trace information from libraries efficiently, to apprise them of information and knowledge resources, to carry out literature survey, to formulate information search strategies, and to use modern tools (Internet, OPAC, search engines etc.) of information search.

PRACTICAL

Introduction to library and its services; Role of libraries in education, research and technology transfer; Classification systems and organization of library; Sources of information- Primary -Sources, Secondary Sources and Tertiary Sources; Intricacies of abstracting and indexing services - (Science Citation Index, Biological Abstracts, Chemical Abstracts, CABI Abstracts, etc.); Tracing - information from reference sources; Literature survey; Citation techniques/Preparation of bibliography; Use of CD-ROM Databases, Online Public Access Catalogue and other computerized - library services; Use of Internet including search engines and its resources; e-resources access methods.

PRACTICAL SCHEDULE

- 1. Introduction to library and its services
- 2. Role of libraries in education, research and technology transfer;
- 3. Classification systems and organization of library
- 4. Sources of information- Primary Sources, Secondary Sources and Tertiary Sources
- 5. Intricacies of abstracting and indexing services
- 6. Science Citation Index, Biological Abstracts, Chemical Abstracts, CABI Abstracts, etc.);

- 7. Tracing information from reference sources;
- 8. Literature survey

9. Mid-Semester

- 10. Citation techniques/Preparation of bibliography;
- 11. Use of CD-ROM Databases,
- 12. Online Public Access Catalogue and other computerized library services
- 13. Online Public Access Catalogue and other computerized library services
- 14. Use of Internet including search engines and its resources
- 15. Use of Internetincluding search engines and its resources
- 16. E-resources access methods.
- 17. Final practical examination

PGS 502 TECHNICAL WRITING AND COMMUNICATION SKILLS 0+1

AIM OF THE COURSE

To equip the students with skills *Viz.,* writing of dissertations, research papers, etc. andto communicate and articulate in English (verbal as well as writing)

PRACTICAL

Grammar - Tenses, parts of speech, clauses, punctuation marks; Error analysis Common errors; Concord; Collocation; Phonetic symbols and transcription; Accentual pattern: Weak forms in connected speech: Participation in group discussion: Facing an interview; presentation of scientific papers. Proof reading. Technical Writing - Various forms of scientific writings- theses, technical papers, reviews, manuals, etc; Structure of thesis and research communications (title page, authorship contents page, preface, introduction, review of literature, material and methods, experimental results and discussion); Writing of abstracts, summaries, précis, citations etc.; commonly used abbreviations in the theses and research communications; illustrations, photographs and drawings with suitable captions; pagination, numbering of tables and illustrations; Writing of numbers and dates in scientific write-ups; Editing and proof-reading; Writing of a review article.

PRACTICAL SCHEDULE

- 1. Grammar (Tenses, parts of speech)
- 2. Grammar (clauses, punctuation marks)
- 3. Error analysis (Common errors); Concord; Collocation;
- 4. Phonetic symbols and transcription;
- 5. Accentual pattern: Weak forms in connected speech
- 6. Participation in group discussion
- 7. Facing an interview; presentation of scientific papers.
- 8. Technical Writing- Various forms of scientific writings- theses, technical papers

9. Mid -semester examination

- 10. Technical Writing- reviews, manuals
- 11. Various parts of thesis and research communications (title page, authorship contents page, preface, introduction, review of literature, material and methods, experimental results and discussion)
- 12. Writing of abstracts, summaries, précis, citations etc
- 13. Commonly used abbreviations in the theses and research communications
- 14. Illustrations, photographs and drawings with suitable captions; pagination, numbering of tables and illustration
- 15. Writing numbers and dates in scientific write-ups
- 16. Editing and proof-reading, writing of a review article.

17. Final practical examination

SUGGESTED READING

- 1. Barnes and Noble. Robert C. (Ed.). 2005. Spoken English: Flourish Your Language.
- 2. Chicago Manual of Style. 14th Ed. 1996. Prentice Hall of India.
- 3. Collins' Cobuild English Dictionary. 1995.
- 4. Harper Collins. Gordon HM and Walter JA. 1970. *Technical Writing*. 3rd Ed.
- 5. Holt, Rinehart and Winston. Hornby AS. 2000. *Comp. Oxford Advanced Learner's Dictionary of Current English*. 6th Ed. Oxford University Press.
- 6. James HS. 1994. Handbook for Technical Writing. NTC Business Books.
- 7. Joseph G. 2000. *MLA Handbook for Writers of Research Papers*. 5th Ed. AffiliatedEast-West Press.
- 8. Mohan K. 2005. Speaking English Effectively. MacMillan India.
- 9. Richard WS. 1969. Technical Writing.
- 10. Sethi J and Dhamija PV. 2004. *Course in Phonetics and Spoken English*. 2nd Ed.Prentice Hall of India.
- 11. Wren PC and Martin H. 2006. *High School English Grammar and Composition*.S. Chand & Co.

PGS 503 INTELLECTUAL PROPERTY AND ITS MANAGEMENT IN 1+0 AGRICULTURE

AIM OF THE COURSE

The main objective of this course is to equip students and stakeholders with knowledge of Intellectual Property Rights (IPR) related protection systems, their significance and use of IPR as a tool for wealth and value creation in a knowledge-based economy.

THEORY

Historical perspectives and need for the introduction of Intellectual Property Right regime; TRIPs and various provisions in TRIPS Agreement; Intellectual Property and Intellectual Property Rights (IPR), benefits of securing IPRs; Indian Legislations for the protection of various types of Intellectual Properties; Fundamentals of patents, copyrights, geographical indications, designs and layout, trade secrets and traditional knowledge, trademarks, protection of plant varieties and farmers' rights and bio-diversity protection; Protectable subject matters, protection in biotechnology, protection of other biological materials, ownership and period of protection; National Biodiversity protection initiatives; Convention on Biological Diversity; International Treaty on Plant Genetic Resources for Food and Agriculture; Licensing of technologies, Material transfer agreements, Research collaboration Agreement, License Agreement.

SUGGESTED READING

- 1. Erbisch FH and Maredia K.1998. Intellectual Property Rights in Agricultural Biotechnology. CABI.
- Ganguli P. 2001. Intellectual Property Rights: Unleashing Knowledge Economy. McGraw-Hill. Intellectual Property Rights: Key to New Wealth Generation. 2001. NRDC and Aesthetic Technologies.
- 3. Ministry of Agriculture, Government of India. 2004. State of Indian Farmer. Vol. V. Technology Generation and IPR Issues. Academic Foundation.
- 4. Rothschild M and Scott N. (Ed.). 2003. Intellectual Property Rights in Animal Breeding and Genetics. CABI.
- 5. Saha R. (Ed.). 2006. Intellectual Property Rights in NAM and Other Developing Countries: A Compendium on Law and Policies. Daya Publ. House.
- The Indian Acts Patents Act, 1970 and amendments; Design Act, 2000; Trademarks Act, 1999; The Copyright Act, 1957 and amendments; Layout Design Act, 2000; PPV and FR Act 2001, and Rules 2003; National Biological Diversity Act, 2003

PGS 504 BASIC CONCEPTS IN LABORATORY TECHNIQUES 0+1 (For Social Science)

PRACTICAL

Use of R / SPSS / equivalent for Frequency distribution, Summarization and tabulation of data, F test, Correlation, Pearson Correlation, Spearman Correlation, ANOVA, ANCOVA

Use of R / SPSS / equivalent for Regression: Simple, Multiple Linear regression, Estimation of regression by OLS & MLE method, Logit, Probit, Stepwise regression, Coefficient of determination

Use of R / SPSS / equivalent for Kolmogorov-Smirnov test, Wilcoxon signed rank test, Mann-Whitney U, Kruskal-Wallis, McNemar's test

Use of R / SPSS / equivalent for Discriminant analysis - fitting of discriminant functions, identification of important variables, Factor analysis. Principal component analysis - obtaining principal component.

Use of R / SPSS / equivalent for Analysis of time series data - AR, MA, ARIMA models

SUGGESTED READING

- 1. Anderson CW & Loynes RM. 1987. The Teaching of Practical Statistics. John Wiley.
- 2. Atkinson AC. 1985. Plots Transformations and Regression. Oxford University Press.
- 3. Chambers JM, Cleveland WS, Kleiner B & Tukey PA. 1983. Graphical Methods for Data Analysis. Wadsworth, Belmount, California.
- 4. Chatfield C & Collins AJ. 1980. Introduction to Multivariate Analysis. Chapman & Hall.
- 5. Chatfield C. 1983. Statistics for Technology. 3 rd Ed. Chapman & Hall.
- 6. Chatfield C. 1995. Problem Solving: A Statistician's Guide. Chapman & Hall.
- 7. Cleveland WS. 1985. The Elements of Graphing Data. Wadsworth, Belmont, California.
- 8. Ehrenberg ASC. 1982. A Primer in Data Reduction. John Wiley.
- 9. Erickson BH & Nosanchuk TA. 1992. Understanding Data. 2 nd Ed. Open University Press, Milton Keynes.
- 10. Snell EJ & Simpson HR. 1991. Applied Statistics: A Handbook of GENSTAT Analyses. Chapman & Hall
- 11. Sprent P. 1993. Applied Non-parametric Statistical Methods. 2 nd Ed. Chapman & Hall.
- 12. Tufte ER. 1983. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Conn.
- 13. Velleman PF & Hoaglin DC. 1981. Application, Basics and Computing of Exploratory Data Analysis. Duxbury Press.
- 14. Weisberg S. 1985. Applied Linear Regression. John Wiley.
- 15. Wetherill GB. 1982. Elementary Statistical Methods. Chapman & Hall.
- 16. Wetherill GB.1986. Regression Analysis with Applications. Chapman & Hall.
- 17. Learning Statistics: http://freestatistics.altervista.org/en/learning.php.
- 18. Free Statistical Soft wares: http://freestatistics.altervista.org/en/stat.php.
- **19.** Statistics Glossary http://www.cas.lancs.ac.uk/glossary_v1.1/main.html

PGS 504

BASIC CONCEPTS IN LABORATORY TECHNIQUES (For Plant Sciences)

AIM OF THE COURSE

To acquaint the students about the basics of commonly used techniques in laboratory.

PRACTICAL

Unit I

Safety measures while in Lab; Handling of chemical substances; Use of burettes, pipettes, measuring cylinders, flasks, separator funnel, condensers, micropipettes and vaccupets. Ashing, drying and sterilization of glassware; Drying of solvents/chemicals.

Unit II

Weighing and preparation of solutions of different strengths and their dilution; Handling techniques of solutions. Preparation of solutions of acids; Neutralisation of acid and bases; Preparation of buffers of different strengths and pH values.

Unit III

Preparation of different agro-chemical doses in field and pot applications. Principles and handling techniques of Chromatography.

Unit IV

Use and handling of microscope, laminar flow, vacuum pumps, viscometer, thermometer, magnetic stirrer, micro-ovens, incubators, sand bath, water bath, oil bath. Preparation of media and methods of sterilization.

Unit V

Seed viability testing, testing of pollen viability; Tissue culture of crop plants; Description of flowering plants in botanical terms in relation to taxonomy. Specific methodologies concerning each discipline

PRACTICAL SCHEDULE

- 1. Safety measures while in Lab; Handling of chemical substances
- 2. Use of burettes, pipettes, measuring cylinders, flasks, separatory funnel, condensers, micro pipettes and vaccupets
- 3. Washing, drying and sterilization of glassware
- 4. Drying of solvents/chemicals
- 5. Weighingandpreparationofsolutionsofdifferentstrengthsandtheirdilution
- 6. Handling techniques of solution; Preparation and neutralisation of acid and bases
- 7. Preparation of buffers of different strengths and pH values

8. Mid semester examination

9. Preparationofdifferentagro-chemicaldosesinfieldandpotapplications (Herbicides and Fertilizers)

- 10. Preparationof different agro-chemical doses infield and pot applications (Pesticides)
- 11. Principles and Handling techniques of Chromatography.
- 12. Use and handling of microscope, laminar flow, vacuum pumps viscometer, thermometer, magnetic stirrer, micro-ovens, incubator, sand bath, water bath, oil bath etc.
- 13. Preparation of media and methods of sterilization
- 14. Seed viability testing, testing of pollen viability
- 15. Tissue culture of crop plants. Description of flowering plants in botanical term sin relation to taxonomy
- 16. Specific methodologies of each discipline concerned.
- 17. Final Practical Examination

SUGGESTED READING

- 1. FurrAK.2000.CRC Hand Book of Laboratory Safety. CRC Press.
- Gabb MH and Latchem WE.1968. A Handbook of Laboratory Solutions. Chemical Publ. Co.

PGS 505 AGRICULTURAL RESEARCH, RESEARCH ETHICS AND RURAL 1+0 DEVELOPMENT PROGRAMMES

AIM OF THE COURSE

To enlighten the students about the organization and functioning of agricultural research systems at national and international levels, research ethics, and rural development programmes and policies of Government.

THEORY

Unit I

History of agriculture in brief; Global agricultural research system: need, scope, opportunities; Role in promoting food security, reducing poverty and protecting the environment; National Agricultural Research Systems (NARS) and Regional Agricultural Research Institutions.

Unit II

Consultative Group on International Agricultural Research (CGIAR): International Agricultural Research Centers (IARC), partnership with NARS, role as a partner in the global agricultural research system, strengthening capacities at national and regional levels; International fellowships for scientific mobility.

Unit III

Research ethics: research integrity, research safety in laboratories, welfare of animals used in research, computer ethics, standards and problems in research ethics.

Unit IV

Concept and connotations of rural development, rural development policies and strategies. Rural development programmes: Community Development Programme, Intensive Agricultural District Programme, Special group – Area Specific Programme.

Unit V

Integrated Rural Development Programme (IRDP) Panchayat Raj Institutions, Cooperatives, Voluntary Agencies/Non-Governmental Organizations. Critical evaluation of rural development policies and programmes. Constraints in implementation of rural policies and programmes.

LECTURE SCHEDULE

- 1. History of agriculture in brief; Global agricultural research system: need, scope, opportunities
- 2. Role in promoting food security, reducing poverty and protecting the environment
- 3. National Agricultural Research Systems (NARS) and Regional Agricultural Research Institutions
- 4. Consultative Group on International Agricultural Research (CGIAR); International Agricultural Research Centres (IARC)
- 5. Partnership with NARS, role as a partner in the global agricultural research system, strengthening capacities at national and regional levels
- 6. International fellowships for scientific mobility.
- 7. Research ethics: research integrity, research safety in laboratories
- 8. Welfare of animals used in research, computer ethics, standards and problems in research ethics.

9. Mid semester examination

- 10. Social trends on research ethics, adequate codes of conduct to regulate researchactivity
- 11. Concept and connotations of rural development, rural development policies and strategies.
- 12. Rural development programmes: Community Development Programme, Intensive Agricultural District Programme
- 13. Special group Area Specific Programme
- 14. Integrated Rural Development Programme (IRDP) Panchayati Raj Institutions, Cooperatives, Voluntary Agencies/ Non-Governmental Organisations.
- 15. Critical evaluation of rural development policies and programmes
- 16. Constraints in implementation of rural policies and programmes
- 17. Final Examination.

SUGGESTED READING

1. Bhalla GS and Singh G. 2001. Indian Agriculture - Four Decades of Development. Sage Publication. Punia MS. Manual on International Research and Research Ethics. CCS, Haryana Agricultural University, Hisar.

- 2. Rao BSV. 2007. Rural Development Strategies and Role of Institutions Issues, Innovations and Initiatives. Mittal Publication.
- 3. Singh K. 1998. Rural Development Principles, Policies and Management. Sage Publication.

SUPPORTING COURSES

SI No.	Course Code	Course Title	Credits
1	COM 501	R and Python Programming	2+1
2	MAT 501	Mathematics For Agricultural Economics	2+1
3	STA 501	Statistical Methods for Applied Sciences	2+1
4	STA 502	Design of Experiments	2+1

COM 501 R AND PYTHON PROGRAMMING 2+1

WHY THIS COURSE?

This course is all about R which is mainly used for statistical analysis while Python provides a more general approach to data science. R and Python are state of the art in terms of programming language oriented towards data science. Learning both of them gives an idea for handling agricultural data.

AIM OF THE COURSE

The objective of the course is partly to give an introduction to python and software R and how to handle data analysis using R.

THEORY

Unit I

Introduction to Python – Identifiers, Keywords, Statements and Expressions, Variables, Operators, Precedence and Associativity, Data Types, Reading Input, Print Output, Type Conversions - Control Flow Statements, Looping Statements, Functions - Built-In Functions, Commonly Used Modules, Packages - Strings and Lists – Iterators.

Unit II

Regular Expression - pattern matching and searching using regex - validations using regular expressions - Exception handling - Python Database Interaction - SQL Database connection using python - Creating, Reading, storing and searching information on tables.

Unit III

R Console; R Data types; R Vector creation using c (); R Assignment operators = <- ; R Arithmetic Operators; R Logical Operators; R Relational Operators;

Unit IV

R Matrix- Create, Print, Add Column using cbind (), Add Row using rbind (), Slice using [,]; R Data Frame - Create using data.frame (), Edit using edit (), Append using cbind (), rbind (), select (), subset (), sort using order (); List in R - Create using list (), Select; Data

Importing and Exporting in R Using read. table () and write. table (); install. packages (), library

Unit V

R script If, Else, Else If statements in R; For Loop and While Loop in R; Scatter Plot, Bar Chart and Histogram in R; Data Visualization with R ggplot2; Publishing Data Visualizations with R Shiny;

PRACTICALS

Implementation of Control Flow Statements, Looping Statements, Functions, Regular Expression, pattern matching and searching using regex. Validations using regular expressions. Python Database Interaction - SQL Database connection using python. Creating, Reading, storing and searching information on tables. R Console; R Vector creation using c(); R Assignment operators = <- ; R Matrix- Create, Print, Add Column using cbind(), Add Row using rbind(), Slice using [,]; R Data Frame - Create using data.frame(), Edit using edit(), Append using cbind(), rbind(), select(), subset(), sort using order(); List in R - Create using list(), Select; Data Importing and Exporting in R Using read.table() and write.table(); install.packages(), library(); Rscript, If, Else, Else If statements in R; For Loop and While Loop in R; Scatter Plot, Bar Chart and Histogram in R; Data Visualization with R ggplot2; Publishing Data Visualizations with R Shiny;

LECTURE SCHEDULE

Unit I

- 1 Introduction to Python Identifiers, Keywords, Statements and Expressions
- 2 Operators, Precedence and Associativity, Data Types
- 3 Reading Input, Print Output, Type Conversions
- 4 Control Flow Statements, Looping Statements
- 5 Functions Built-In Functions, Commonly Used Modules, Packages
- 6 Strings and Lists
- 7 Iterators

Unit II

- 8 Regular Expression
- 9 Pattern matching and searching using regex
- 10 Validations using regular expressions
- 11 Exception handling
- 12 Python Database Interaction SQL Database connection using python
- 13 Creating, Reading, storing and searching information on tables.

Unit III

- 14 R Console; R Data types; R Vector creation using c();
- 15 R Assignment operators = <- ;
- 16 R Arithmetic Operators;
- 17 Mid semester examination

- 18 R Logical Operators;
- 19 R Relational Operators;

Unit IV

- 20 R Matrix- Create, Print,
- Add Column using cbind(), Add Row using rbind(), Slice using [,];
- 22 R Data Frame Create using data.frame (), Edit using edit(), Append using cbind (), rbind(),
- 23 Select (), subset(), sort using order();
- 24 List in R Create using list(), Select;
- 25 Data Importing and Exporting in R Using read.table() and write.table();
- 26 install. packages(), library();

Unit V

- 27 Rscript
- 28 If, Else in R
- 29 Else If statements in R;
- 30 For Loop in R;
- 31 While Loop in R;
- 32 Scatter Plot, Bar Chart and Histogram in R;
- 33 Data Visualization with R ggplot2
- 34 Publishing Data Visualizations with R Shiny;

PRACTICAL SCHEDULE

- 1 Implementation of Control Flow Statements, Looping Statements, Functions
- 2 Regular Expression
- 3 Pattern matching and searching using regex
- 4 Validations using regular expressions
- 5 Python Database Interaction SQL Database connection using python
- 6 Creating, Reading, storing and searching information on tables
- 7 R Console; R Vector creation using c(); R Assignment operators = <- ;
- 8 R Matrix- Create, Print, Add Column using cbind (), Add Row using rbind (), Slice using [,];
- 9 R Data Frame Create using data. frame (), Edit using edit(), Append using cbind (), rbind (), select (), subset (), sort using order();
- 10 List in R Create using list(), Select; Data Importing and Exporting in R Using read.table () and write. Table ();
- 11 Install. packages(), library(); Rscript,
- 12 If, Else, Else If statements in R;
- 13 For Loop in R; While Loop in R;
- 14 Scatter Plot, Bar Chart and Histogram in R;
- 15 Data Visualization with R ggplot2;
- 16 Publishing Data Visualizations with R Shiny;
- 17 Final practical examination

LEARNING OUTCOME

This course will impart knowledge on how to interpret and analyze data using R and Python programming.

SUGGESTED READING

- 1 Michael J. Crawley (2013). The R Book. 2nd Edition. John Wiley.
- 2 Robert Gentleman (2008). R Programming For Bioinformatics. Chapman and Hall/CRC
- 3 Brian S. Everitt and Torsten Hothorn (2009). A Handbook of Statistical Analyses Using R. Second Edition. Chapman and Hall/CRC
- 4 Bassi, S. (2017). Python for bioinformatics. Chapman and Hall/CRC.

SUGGESTED WEBSITES

- 1 https://www.python.org/doc/
- 2 https://www.r-project.org/other-docs.html
- 3 https://www.r-exercises.com/
- 4 RStudio.com Shiny Tutorial https://shiny.rstudio.com/tutorial/ https:// shiny. rstudio.com /articles/

MAT 501 MATHEMATICS FOR AGRICULTURAL ECONOMICS 2+1

WHY THIS COURSE?

This course provides a strong quantitative basis for the students to understand various Micro and Macroeconomic concepts

AIM OF THE COURSE

This course exposure student of Agricultural Economics to calculus and its applications in Agricultural Economics. It covers applications of Differential calculus, Integral calculus and Differential equations. This course provides a strong quantitative basis for the students to understand various Micro and Macro economic concepts.

THEORY

Unit I

Matrices – types - algebra of matrices. Determinants – properties - solution of simultaneous equations. Inverse of a matrix. Caylay Hamilton theorem- Eigen values and Eigen vectors.

Unit II

Definition and examples of variables and functions- basic theorems on limits and continuity (without proof). Revision of methods of differentiation. Maxima and minima of single. Application of differentiation - Elasticity of demand in terms of differentiation.

Average and marginal functions. Cost and Revenue curves- relationship. Conditions for profit maximization, Effects of taxation and subsidy.

Unit III

Revision of Partial differentiation - Maxima and minima of several variables with and without constraints -Marginal demands, partial elasticitics and utility analysis. Theory of consumer behavior- Rate of commodity substitution, Maximization of utility – slut sky equation (Income and substitution effects). Production functions and their mathematical properties- Isoquants and Ridge lines- Least cost combination – Constrained profit Maximization- Properties of linear homogenous functions- Euler's theorem.

Unit IV

Definite integrals, methods of integration definite integral; - Capital formation. Present value of continuous equal income stream. Consumer's and producer's surplus.

Unit V

Differential equations-meaning-types of differential equations-order and degree of the differential equations-formation and solution of first order and first degree linear differential equations. Solution of linear homogeneous equations. Applications in Micro economics – Utility and Demand analysis- Cost functions, Market equilibrium Harood Domor model, basic neo classic models, Solow models Domar debit models and some further applications.

PRACTICALS

Problems in algebra of matrices and determinants, simultaneous equation, eigen values and eigen vectors, simple differentiation, maxima and minima for single variables. Application of differentiation in Agricultural Economics. Simple problems in partial differentiation & Maxima and minima for several variables, Maxima and minima for several variables with constraints-Lagrange's method, Application of partial differentiation in agricultural economics, simple integral, calculation of consumer's and producer's surplus, formation of differential equation, solution of first order and first degree linear differential, solution of linear homogeneous equations.

LECTURE SCHEDULE

Unit I

- 1 Matrices types of matrices, Algebra of matrices and determinant
- 2 Inverse of a matrix, Solution of simultaneous linear equations
- 3 Caylay Hamilton theorem
- 4 Eigen Values and Eigen Vector

Unit II

- 5 Definition and examples of variables and functions
- 6 Basic theorems on limits and continuity (without proof).
- 7 Revision and Simple Problems in differentiation

- 8 Maxima and minima of function of single with out constraints
- 9 Definitions of Elasticity, Total average and Marginal cost curve relations
- 10 Total average and Marginal Revenue curves Conditions for profit maximization

Unit III

- 11 Revision and Simple Problems in partial differentiation.
- 12 Maxima and minima of function of several variables without constraints
- 13 Maxima and minima of function of several variables with constraints -Lagrange's Multiplier's method
- 14 Partial elasticties and utility Analysis Theory of consumer behavior
- 15 Rate of commodity substitution
- 16 Mid semester examination
- 17 Maximization of utility
- 18 Slutsky equation (Income and substitution effects).
- 19 Production functions and their mathematical properties
- 20 Isoquants and Ridge lines
- 21 Least cost combination Constrained profit Maximization
- 22 Properties of linear homogeneous functions Euler's theorem

Unit IV

- 23 Definite integrals and their geometrical applications
- 24 Capital formation Capital growth equation
- 25 Present value of continuous equal income stream
- 26 Calculations of consumer's and producer's surplus

Unit V

- 27 Solution of first order differential equations and Homogeneous
- 28 Linear differential equation with constant coefficients
- 29 Applications in Micro economics Utility and Demand analysis
- 30 Applications in Micro economics Cost functions, , Market equilibrium
- 31 Applications in Macro growth economics Dynamic multiplier models
- 32 Applications in Macro growth economics Harood Domor model
- 33 Applications in Macro growth economics Basic neo classic models
- 34 Applications in Macro growth economics Solow models Domar debit models

PRACTICAL SCHEDULE

- 1 Simple Problems in Matrices, Inverse Matrix
- 2 Problems in Solution of simultaneous linear equations
- 3 Problems in cayley Hamilton
- 4 Problems in Eigen value and Eigen verctor
- 5 Simple Problems in Differentiation
- 6 Maximum and minimum of function of single variables without constraints
- 7 Problems in Elasticity, Total average and Marginal cost/Revenue curves

- 8 Problems in Marginal demands, Partial elasticties and utility Analysis.
- 9 Simple Problems in partial differentiation
- 10 Maximum and minimum of function of several variables without constraints
- 11 Maximum and minimum of function of several variables with constraints
- 12 Problems in Maximization of utility and slut sky equation (Income and substitution effects) and Constrained profit Maximization
- 13 Homogeneous functions and Euler's theorem on homogenous functions
- 14 Problems in Definite integrals geometrical applications
- 15 Calculations of consumer's and producer's surplus
- 16 Problems in Homogeneous, Linear differential equations
- 17 Final practical examination

LEARNING OUTCOME

Students can get exposure in basic knowledge in set theory, cost curve, supply curves and asticity with the applications in Agricultural Economics. Students can know to solve macro and micro economic models. Also this course provides a strong quantitative basis for the students to understand various Micro and Macro economic concepts

SUGGESTED READING

- 1 Metha, B.C. and Madani, G.M.K. (Reprint2008) Mathematics for Economists, Sultan Chand & Sons Educational Publishers, New Delhi.
- 2 ArumugamS. And Thangapandi Isaac (2002), Advanced Calculus, New Gamma Publishing house, Chennai.

SUGGESTED WEBSITES

- 1 http://en.wikipedia.org/wiki/Set_theory mathworld.wolfram.com /Newtons Divided Difference Interpolation Formula.html
- 2 http://en.wikipedia.org/wiki/Taylor_series

STA 501STATISTICAL METHODS FOR APPLIED SCIENCES2+1

WHY THIS COURSE?

- This course will help the students
- To study the exploratory data analysis
- To understand the various probability distributions and their application in their respective fields
- To perform the parametric and non-parametric tests based on the data
- To learn the relationship of the variables using correlation and regression techniques

AIM OF THE COURSE

The students would be exposed to concepts of statistical methods and statistical inference that would help them in understanding the importance of statistics. It would also help them in understanding the concepts involved in data presentation, analysis and interpretation. The students would get an exposure to presentation of data, probability distributions, parameter estimation, parametric and non-parametric tests, selection of sampling techniques and correlation, regression and ANOVA techniques.

THEORY

Unit I

Descriptive Statistics: Measure of Central Tendency, Measure of Dispersion, Skewness and Kurtosis for raw data only. Graphical and Diagrammatical representation: Bar Chart, Pie Chart, Frequency curve, Box Plot. Theory of Probability: axioms and properties, Addition and Multiplication Theorems on probability, Random Variable and Mathematical Expectation.

Unit II

Discrete and continuous probability distribution: Binomial, Poisson, Normal Distribution. Sampling theory: Population, parameter, sample and statistics; Sampling, need for sampling; Probability sampling: Simple random sampling (SRS), stratified random sampling, systematic sampling, cluster sampling; Non Probability sampling: Purposive and judgment sampling.

Unit III

Sampling distribution: Standard error and its uses, chi-square, t and F distributions. Theory of Estimation: Point Estimation, properties of good estimators; Properties of good estimators – unbiasedness, consistency, efficiency and sufficiency. Interval estimation: confidence limit, confidence interval. Test of significance based on Normal, t, F and Chisquare distributions.

Unit IV

Correlation and Regression: Correlation, types of correlation, pearson's correlation, testing the significance of correlation coefficient, rank correlation. Simple linear regression: assumption and fitting of simple linear regression, testing and interpretation of regression coefficient, coefficient of determination. Multiple linear regression and testing of coefficients.

Unit V

Introduction to ANOVA: One Way and Two way ANOVA. Non-parametric test: Sign test, Wilcoxon Test, Mann-Whitney U-test, Run test for the randomness of the sequence, Median test, Kruskalwallis test, Friedman's test.

PRACTICAL

Descriptive Statistics: Measure of central tendency, Measure of dispersion, Skewness and Kurtosis for raw data. Graphical and diagrammatical representation, Problems on Binomial, Poisson, Normal Distribution. Confidence interval estimation, Large sample test – testing mean and proportion, t-Test for single mean and two means, F-test for two variance, Test based on chi-square distributions. Correlation and Regression analysis. One Way ANOVA and Two way ANOVA. Non Parametric test: Wilcoxon Test, Mann-Whitney U-test, Run test for the randomness of the sequence, Median test, Kruskalwallis test, Friedman's test

LECTURE SCHEDULE

Unit I

- 1 Descriptive Statistics: Measure of central tendency for raw data
- 2 Descriptive Statistics: Measure of dispersion for raw data
- 3 Skewness and Kurtosis for raw data
- 4 Graphical and diagrammatical representation Bar Chart, Pie Chart, frequency curve, Box Plot
- 5 Theory of Probability: axioms and properties, Addition and Multiplication Theorems on probability
- 6 Random Variable and Mathematical Expectation

Unit II

- 7 Discrete distribution: Binomial distribution
- 8 Discrete distribution: Poisson distribution
- 9 Continuous probability distribution: Normal Distribution
- 10 Sampling theory: Population, parameter, sample and statistics; Sampling, need for sampling
- 11 Probability sampling: Simple random sampling (SRS) with and without replacement
- 12 Probability sampling: stratified random sampling and its method of allocation, Systematic sampling, cluster sampling
- 13 Non Probability sampling: Purposive and judgment sampling

Unit III

- 14 Sampling distribution: Standard error and its uses, chi-square, t and F distributions
- 15 Theory of Estimation: Point Estimation, Properties of good estimators: unbiasedness, consistency, efficiency and sufficiency
- 16 Interval estimation: confidence limit, confidence interval for single and two sample mean (t and Z)
- 17 Mid Semester Examination
- 18 Test of significance based on Normal distribution
- 19 Test of significance based on t distribution
- 20 Test of significance based on F distribution

21 Test of significance based on chi-square distributions

Unit IV

- 22 Correlation, Types of correlation, Pearson's correlation and its properties
- 23 Rank correlation
- 24 Simple linear regression: assumption and fitting of simple linear regression
- 25 Testing and interpretation of regression coefficient, coefficient of determination
- 26 Multiple linear regression model Matrix approach and
- 27 Testingthe significance of correlation coefficient and regression coefficients, coefficient of determination

Unit V

- 28 Introduction to ANOVA: One Way ANOVA
- 29 Two way ANOVA
- 30 Introduction to Non-parametric test: Sign test
- 31 Wilcoxon Test, Mann-Whitney U-test
- 32 Run test for the randomness of the sequence, Median test
- 33 Kruskalwallis test
- 34 Friedman's test

PRACTICAL SCHEDULE

- 1 Descriptive Statistics: Measure of central tendency, Measure of dispersion, Skewness and Kurtosis for raw data.
- 2 Graphical and diagrammatical representation Bar Chart, Pie Chart, frequency curve, Box Plot
- 3 Problems on Binomial distribution, Poisson distribution
- 4 Problems on Normal Distribution
- 5 Confidence interval estimation for single and two sample mean (t and Z)
- 6 Large sample test testing mean and proportion of single and two sample
- 7 t-Test for single mean, two means (paired t-test)
- 8 t-Test for two means (independent t-test), F-test for two variance
- 9 Test of significance based on chi-square distributions
- 10 Correlation and testing of correlation coefficient
- 11 Regression analysis and testing the significance of regression coefficient
- 12 One Way ANOVA and Two way ANOVA
- 13 Wilcoxon Test, Mann-Whitney U-test
- 14 Run test for the randomness of the sequence, Median test
- 15 Kruskalwallis test
- 16 Friedman's test
- 17 Practical Examination

LEARNING OUTCOME

After successful completion of the course the students will be able to understand the exploratory data analysis, sampling and probability distribution, perform parametric and non parametric tests, well versed with regression and correlation analysis.

SUGGESTED READING

- Goon A M, Gupta MK and Das Gupta B. 1983. Fundamentals of Statistics. Vol.
 I. The World Press.
- 2 Hoel PG. 1971. Introduction to Mathematical Statistics. John Wiley
- 3 Hogg RV and Craig TT. 1978. Introduction to Mathematical Statistics. Macmillan
- 4 Robert V. Hogg, Joseph W. McKean, Allen T. Craig (2012). Introduction to Mathematical Statistics (7th Edition)
- 5 Siegel S, Johan N and Casellan Jr. 1956. Non-parametric Tests for Behavior Sciences. John Wiley
- 6 Gupta. S.P, 2005, Statistical Methods, Sultan Chand & Sons, New Delhi
- 7 Rangaswamy, R, 2009, A text book of Agricultural Statistics, New Age International (P) Ltd., New Delhi.
- 8 K.P. Dhamu and K. Ramamoorthy, 2007, Statistical Methods, Agrobios (India), Jodhpur.
- 9 R. GangaiSelvi and C. Kailasam, 2017, Applied Statistics, Kalyani Publishers, New Delhi.

SUGGESTED WEBSITES

- 1 https://online.stat.psu.edu/statprogram/statistical%20methods
- 2 https://home.iitk.ac.in/~kundu/Statistical-Methods.pdf
- 3 https://www.nature.com/subjects/statistical-methods
- 4 https://sccn.ucsd.edu/~arno/mypapers/statistics.pdf
- 5 https://www.sciencedirect.com/book/9780123749703/statistical-methods

STA 502DESIGN OF EXPEREIEMNTS2+1

AIM OF THE COURSE

Designing an experiment is an integrated component of research in almost all sciences. The students would be exposed to various Design of Experiments so as to enable them to understand the concepts involved in planning, designing their experiments and analysis of experimental data.

THEORY

Unit I

Need for designing of experiments, Characteristics of good design. Basic principles of designs- randomization, replication and local control. Uniformity trails, size and shape of plots and blocks – determination of optimum plot size.

Unit II

Analysis of Variance, Data Transformation – Logrithmic, angular and square root transformation. Multiple comparison procedures – Least significant difference and Duncan's multiple range test. Completely randomized design, randomized block design and Latin square design.

Unit III

Factorial Experiments: 2ⁿ and 3ⁿ factorial experiments, analysis using regular method, Yates algorithm (2ⁿ, upto three factors), Asymmetric factorial experiments (upto three factors). orthogonality and partitioning of degrees of freedom. Concept of confounding in symmetric factorial experiments, complete and partial confounding. Split plot and strip plot designs.

Unit IV

Missing plot techniques in randomized block design and Latin square designs. Analysis of covariance.

Unit V

Balanced Incomplete Block Design (BIBD), Partially Balanced Incomplete Block Design (PBIBD), Lattice design, alpha design: concept, randomization procedure, analysis and interpretation. Introduction to resolvable designs and their applications. Combined analysis. Response surface design.

PRACTICAL

Uniformity trial data analysis, formation of plots and blocks, Fairfield Smith Law, Analysis of data obtained from CRD, RBD, LSD; Analysis of factorial experiments; Analysis of covariance; Analysis with missing data; Data transformation - Split plot and strip plot designs - Analysis of data obtained from BIBD, PBIBD.

LECTURE SCHEDULE

Unit I

- 1. Introduction to principles of Experimental designs; need for designing of experiments
- 2. Characteristics of good design
- 3. Basic principles of designs- randomization, replication and local control.
- 4. Uniformity trails, size and shape of plots and blocks determination of optimum plot size

Unit II

- 5. Analysis of Variance
- 6. Data Transformation Logrithmic and angular transformation
- 7. Square root transformation
- 8. Multiple comparison procedures Least significant difference and Duncan's multiple range test

- 9. Completely randomized design: Layout, randomization, analysis, advantage and disadvantage
- 10. Randomized block design: Layout, randomization, analysis, advantage and disadvantage
- 11. Latin square design: Layout, randomization, analysis, advantage and disadvantage
- 12. Introduction to Factorial Experiments and its type

Unit III

- 13. 2ⁿ factorial experiments using regular method (up to three factors)
- 14. 3ⁿ factorial experiments using regular method (up to three factors)
- 15. Yates algorithm: 2ⁿ factorial experiments (up to three factors)
- 16. Asymmetric factorial experiments (up to three factors)

17. Mid Semester Examination

- 18. Orthogonality : orthogonal Latin squares, Mutually orthogonal Latin squares (MOLS)
- 19. Partitioning of degrees of freedom
- 20. Concept of confounding in symmetric factorial experiments (in 2³ factorial), advantage and disadvantage
- 21. Complete and Partial confounding (in 2³ factorial)
- 22. Split plot designs: Layout, Randomization, Analysis, Advantage, Disadvantage.
- 23. Strip plot designs: Layout, Randomization, Analysis, Advantage, Disadvantage

Unit IV

- 24. Missing plot techniques in randomized block design one and two missing observation
- 25. Missing plot techniques in Latin square designs. one missing observation
- 26. Analysis of covariance (with one covariate)

Unit V

- 27. Balanced Incomplete Block Design (BIBD) concept, randomization procedure
- 28. Balanced Incomplete Block Design (BIBD) analysis and interpretation
- 29. Partially Balanced Incomplete Block Design (PBIBD): concept, randomization procedure, analysis and interpretation.
- 30. Introduction to Lattice design: Square lattice design, randomization, analysis and their application
- 31. Introduction to Alpha design: concept, randomization procedure, analysis and interpretation.
- 32. Introduction to resolvable designs and their applications.
- 33. Concepts of Combined analysis.
- 34. Response surface design and application: second order response surface design

PRACTICAL SCHEDULE

- 1. Uniformity trial data analysis
- 2. Formation of plots and blocks
- 3. Fairfield Smith Law

- 4. Analysis of data obtained from CRD
- 5. Analysis of data obtained from RBD
- 6. Analysis of data obtained from LSD
- 7. Data transformation: logarithmic, angular transformation
- 8. Square root transformations
- 9. Analysis with missing data (RBD one missing value only)
- 10. Analysis of factorial experiments symmetrical
- 11. Analysis of factorial experiments symmetrical
- 12. Split plot design
- 13. Strip plot design
- 14. Analysis of covariance in case of RBD
- 15. Analysis of data generated from a BIB design
- 16. Analysis of data generated from a PBIB design
- 17. Final practical examination

SUGGESTED READING

- 1. Cochran WG and Cox GM. 1957. Experimental Designs. 2nd Ed. John Wiley.
- 2. Dean AM and Voss D. 1999. Design and Analysis of Experiments. Springer.
- 3. Douglas C. Montgomery (2012). Design and Analysis of Experiments, 8th Ed. John Wiley.
- 4. Federer WT. 1985. Experimental Designs. MacMillan.
- 5. Fisher RA. 1953. Design and Analysis of Experiments. Oliver & Boyd.
- 6. Nigam AK and Gupta VK. 1979. Handbook on Analysis of Agricultural Experiments. IASRI Publ.
- 7. Pearce SC. 1983. The Agricultural Field Experiment: A Statistical Examination of Theory and Practice. John Wiley
- 8. Gomez, K.A. and Gomez, A.A., 1993, Statistical Procedures for Agricultural Research, John Wiley & Sons, New Delhi.
- 9. Rangaswamy, R, 2009, A text book of Agricultural Statistics, New Age International (P) Ltd., New Delhi.
- 10. K.P. Dhamu and K. Ramamoorthy, 2007, Statistical Methods, Agrobios (India), Jodhpur.

SUGGESTED WEBSITES

- 1. www.drs.icar.gov.in
- 2. https://www.moresteam.com/toolbox/design-of-experiments.cfm
- 3. https://www.coursera.org/specializations/design-experiments
- 4. https://online.stat.psu.edu/statprogram/stat503
- 5. https://www.labmanager.com/laboratory-technology/online-resources-for-experim ental-design-21103

M.Sc. (Agri.) SOIL SCIENCE

SI No.	Course code	Course title	Cr hr
Major C	ourses		
1.	Soil 501*	Soil physics	2+1
2.	Soil 502*	Soil fertility and fertilizer use	2+1
3.	Soil 503*	Soil chemistry	2+1
4.	Soil 504*	Soil mineralogy, genesis and classification	2+1
5.	Soil 505	Soil erosion and conservation	2+1
6.	Soil 506	Soil biology and biochemistry	2+1
7.	Soil 507	Radioisotopes in soil and plant studies	1+1
8.	Soil 508	Soil, water and air pollution	2+1
9.	Soil 509	Remote sensing and GIS technique for soil and crop studies	2+1
10.	Soil 510	Analytical technique and instrumental methods in soil and plant analysis	0+2
11.	Soil 511	Management of problematic soils and water	2+1
12.	Soil 512	Land degradation and restoration	1+0
13.	Soil 513	Soil survey and land use planning	2+0
14.	Soil 514	Introduction to nanotechnology	2+1
Semina	and Research		
1.	Soil 591	Master's Seminar	0+1
2.	Soil 599	Master's Research	0+30
	* Courses to	o be compulsorily registered	
Minor c	ourse offered		
1	BIOCHEM 501	Plant Bio-chemistry	2+1

M.Sc. (Agri.) Soil Science

SEMESTER WISE DISTRIBUTION OF COURSES

SEMESTSER I

SI.No.	Course No.	Course Title	Credits
I.	Major Courses to be registered		12
II.	Minor Courses to be registered 3		3
III.	Supporting Course		
1	STA 501	Statistical Methods for Applied Sciences	2+1
IV.	Common Courses		
1	PGS 501	Library and Information Services	0+1
2	PGS 503	Intellectual Property and its Management in Agriculture	1+0
3	PGS 504	Basic Concepts in Laboratory Techniques	0+1

SEMESTSER II

SI.No.	Course No.	Course Title	Credits
١.	Major Courses	8	
11.	Minor Courses to be registered		
111.	Supporting Course		
1	STA 502	Design of Experiments	2+1
IV.	Common Courses		
1	PGS 502	Technical Writing and Communication Skill	0+1
2	PGS 505	Agricultural Research, Research Ethics and Rural Development Programmes	1+0

SEMESTER III

SI.No.	Course No.	Course Title	Credits
1	SOIL 591	Master's Seminar	0+1
2	SOIL 599	Master's Research	0+15

SEMESTER IV

SI.No.	Course No.	Course Title	Credits
1	SOIL 599	Master's Research	0+15

SOIL PHYSICS

AIM OF THE COURSE

To impart basic knowledge about soil physical properties and processes in relation to plant growth.

THEORY

Unit I

Basic principles of physics related to soil, soil as a three-phase system. Soil texture, textural classes, mechanical analysis, specific surface area. Soil consistence; dispersion and workability of soils; soil compaction and consolidation; soil strength; swelling and shrinkage-basic concepts. Alleviation of soil physical constraints for improving crop production. Soil erosion and erodibility.

Unit II

Soil structure-genesis, types, characterization and management of soil structure; soil aggregation, aggregate stability; soil tilth, characteristics of good soil tilth; soil crusting - mechanism, factors affecting and evaluation; soil conditioners; puddling, its effect on soil physical properties; clod formation.

Unit III

Soil water: content and potential, soil water retention, soil-water constants, measurement of soil water content, energy state of soil water, soil water potential, soil-moisture characteristic curve; hysteresis, measurement of soil-moisture potential.

Unit IV

Water flow in saturated and unsaturated soils, Poiseuille's law, Darcy's law; hydraulic conductivity, permeability and fluidity, hydraulic diffusivity; measurement of hydraulic conductivity unsaturated and unsaturated soils. Infiltration; internal drainage and redistribution; evaporation; hydrologic cycle, field water balance; soil-plant-atmosphere continuum.

Unit V

Composition of soil air; renewal of soil air - convective flow and diffusion; measurement of soil aeration; aeration requirement for plant growth; soil air management. Modes of energy transfer in soils; energy balance; thermal properties of soil; measurement of soil temperature; soil temperature in relation to plant growth; soil temperature management.

PRACTICAL

Determination of B.D, P.D and mass volume relationship of soil, Mechanical analysis by hydrometer and international pipette method

Measurement of Atterberg limits, Aggregate analysis - dry and wet, Measurement of soil-

water content by different methods, Measurement of soil-water potential by using tensiometer and gypsum Blocks, Determination of soil-moisture characteristics curve and computation of pore-size, distribution, Determination of hydraulic conductivity under saturated and unsaturated conditions, Determination of infiltration rate of soil, Determination of aeration porosity and oxygen diffusion rate, Soil temperature measurements by different methods, Estimation of water balance components in bare and cropped fields.

LECTURE SCHEDULE

Unit I

- 1. Basic principles of soil physics
- 2. Soil as a three phase system.
- 3. Soil texture-classes-mechanical analysis-specific surface area.
- 4. Soil consistence factors affecting-dispersion and soil workability
- 5. Soil compaction and consolidation.
- 6. Soil strength swelling and shrinkage basic concepts.
- 7. Alleviation of soil physical constraints for crop production. Soil erosion and erodability

Unit II

- 8. Soil structure genesis, types, characterization and its management.
- 9. Soil aggregation, aggregate stability
- 10. Soil tilth, characteristics of good soil tilth
- 11. Soil crusting mechanism, factors affecting and evaluation
- 12. Soil conditioners
- 13. Puddling its effect on soil physical properties, Clod formation

Unit III

- 14. Soil water content and soil water potential
- 15. Soil-water constants and soil water retention
- 16. Measurement of soil water content

17. Mid-Semester Examination

- 18. Energy state of soil water
- 19. Soil-moisture characteristic curve
- 20. Hysteresis, measurement of soil-moisture potential.

Unit IV

- 21. Water flow in saturated and unsaturated soils
- 22. Poiseuille's law, Darcy' slaw
- 23. Hydraulic conductivity, permeability and fluidity, hydraulic diffusivity
- 24. Measurementofhydraulicconductivityinsaturatedandunsaturatedsoils.
- 25. Infiltration, internal drainage, and redistribution
- 26. Evaporation, hydrologic cycle, field water balance
- 27. Soil-plant- atmosphere continuum.

Unit V

- 28. Composition of soil air; renewal of soil air, Convective flow and diffusion
- 29. Measurement of soil aeration
- 30. Aeration requirement for plant growth and Soil air management
- 31. Modes of energy transfer in soils
- 32. Energy balance, soil thermal properties of soil
- 33. Soil temperature and its measurement
- 34. Soil temperature in relation to plant growth and management of soil temperature

PRACTICAL SCHEDULE

- 1. Collection of soil samples for soil physical analysis
- 2. Determination of bulk density, particle density and mass volume relationship of soil.
- 3. Textural analysis of soil by international pipette method
- 4. Textural analysis of soil by hydrometer method
- 5. Measurement of Atterberg limits
- 6. Aggregate analysis in soil-dry sieving method
- 7. Aggregate analysis in soil-wet sieving method
- 8. Measurement of soil-water content by different methods
- 9. Measurementofsoil-waterpotentialbyusingtensiometerandgypsumBlocks,
- 10. Determination of soil-moisture characteristics curve, computation of pore-size distribution.
- 11. Determination of hydraulic conductivity under saturated soil condition
- 12. Determination of hydraulic conductivity of under unsaturated soil condition
- 13. Determination of infiltration rate of soil
- 14. Determination of aeration porosity and oxygen diffusion rate in soil
- 15. Determination of soil temperature measurements by different methods
- 16. Estimation of water balance components in bare and cropped fields.
- 17. Final practical examination

LEARNING OUTCOME

Experience on the knowledge of soil physical properties and processes in relation to plant growth.

SUGGESTED READING

- 1. Baver L.D., Gardner W.H. and Gardner W.R.1972. Soil Physics. John Wiley & Sons.
- 2. GhildyalB.P.andTripathiR.P.2001.Soil Physics. New Age International.
- 3. HanksJ.R.andAshcroftG.L.1980. Applied Soil Physics. Springer Verlag.
- 4. Hillel D. 1980. Applications of Soil Physics. Academic Press.
- 5. HillelD.1980. Fundamentals of Soil Physics. Academic Press.
- 6. Hillel D. 1998. Environmental Soil Physics. Academic Press.
- 7. Hillel D. 2003. Introduction to Environmental Soil Physics. Academic Press.
- 8. Hillel D. 2003. Introduction to Environmental Soil Physics. Academic Press.

- 9. IndianSocietyofSoilScience.2002.
- 10. Fundamentals of Soil Science. ISSS, New Delhi. Kohnke H. 1968. Soil Physics. McGraw Hill.
- 11. Lal R .and ShuklaM.K. 2004. Principles of Soil Physics .Marcel Dekker.
- 12. Oswal M.C.1994. Soil Physics. Oxford& IBH.

SUGGESTED WEBSITES

1.https://www.elsevier.com 2.https://www.crcpress.com

SOIL 502* SOIL FERTILITY AND FERTILIZER USE 2+1

AIM OF THE COURSE

To impart knowledge about soil fertility and its control, and to understand the role of fertilizers and manures in supplying nutrients to plants so as to achieve high fertilizer use efficiency

THEORY

Unit I

Soil fertility and soil productivity; fertility status of major soils group of India; nutrient sources - fertilizers and manures; Criteria of essentiality, classification, law of minimum and maximum, essential plant nutrients - functions and deficiency symptoms, Nutrient uptake, nutrient interactions in soils and plants.

Unit II

Soil and fertilizer nitrogen – sources, forms, immobilization and mineralization, nitrification, denitrification; biological nitrogen fixation -types, mechanism, microorganisms and factors affecting; nitrogenous fertilizers and their fate in soils; management of fertilizer nitrogen in lowland and upland conditions for high fertilizer use efficiency.

Unit III

Soil and fertilizer phosphorus - forms, immobilization, mineralization, reactions in acid and alkali soils; factors affecting phosphorus availability in soils; phosphatic fertilizers - behaviour in soils and management under field conditions. Potassium forms, equilibrium in soils and its agricultural significance; mechanism of potassium fixation; management of potassium fertilizers under field conditions; quantity– intensity relationships

Unit IV

Calcium, magnesium and sulphur - source, forms, fertilizers and their behaviour in soils; factors affecting their availability in soils; role in crops and human health; management

of calcium, magnesium and sulphur fertilizers.

Micronutrients – critical limits in soils and plants; factors affecting their availability and correction of their deficiencies in plants; role of chelates in nutrient availability.

Unit V

Common soil test methods for fertilizer recommendations; soil test crop response correlations and response functions. Fertilizer use efficiency; site-specific nutrient management; plant need based nutrient management; integrated nutrient management.

Soil fertility evaluation - biological methods, soil, plant and tissue tests; Determination of critical limit, DRIS. Specialty fertilizers concept, Need and category. Current status of specialty fertilizers uses in soils and crops of India.

Definition and concepts of soil health and soil quality. Soil quality in relation to sustainable agriculture; Long term effects of fertilizers and soil quality.

PRACTICAL

- Soil and plant sampling and processing for chemical analysis
- Determination of soil pH, total and organic carbon in soil
- Chemical analysis of soil for total and available nutrients (major and micro)
- Analysis of plants for essential elements (major and micro)

LECTURESCHEDULE

Unit I

- 1. Soil fertility and soil productivity, fertility status of major soils group of India
- 2. Nutrient sources fertilizers and manures. Criteria of essentiality & essential plant nutrients; classification of nutrients, law of maximum and minimum.
- 3. Functions, deficiency and toxicity symptoms- macro nutrients.
- 4. Functions, deficiency and toxicity symptoms- micro nutrient.
- 5. Nutrient uptake movement of ions from soils to roots, ion absorption by plants.
- 6. Nutrient interactions in soils and plants.

Unit II

- 7. Soil and fertilizer Nitrogen- sources & classification, forms of N & N cycle
- 8. N transformation in soils-immobilization and mineralization, nitrification, denitrification and volatilization. Factors affecting transformation.
- 9. Biological nitrogen fixation-types, mechanism, micro organisms and factors affecting
- 10. Nitrogenous fertilizers and their fate in soils
- 11. Management of fertilizer nitrogen in lowland conditions for high fertilizer use efficiency.
- 12. Management of fertilizer nitrogen in upland conditions for high fertilizer use efficiency.

Unit III

13. Soil and fertilizer phosphorus – sources, forms, classification; P transformation - immobilization, mineralization.

- 14. Reactions of P in acid and alkali soil and factors affecting phosphorus availability in soils
- 15. Phosphaticfertilizers-behaviorsinsoilandmanagementunderfieldconditions
- 16. Soil and fertilizer potassium-sources, forms & classification.

17. Mid-semester Examination

- 18. Factors affecting K availability, Quantity-Intensity relationships
- 19. K equilibrium in soils and its agricultural significance-Mechanism of potassium fixation.
- 20. Management of potassium fertilizers under field conditions.

Unit IV

- 21-23. Calcium, Magnesium & Sulphur— sources, forms, transformation and cycle, factors affecting their availability in soils; their role in crops and human health. -Fertilizers & their behavior in soils, management of calcium, magnesium & sulphur fertilizers.
- 24. Micronutrients– sources and forms, critical limits in soils and plants (Cate and Nelson critical limit concept).
- 25. Factors affecting micro nutrients availability and correction of their deficiencies in plants.
- 26. Chelated micronutrients, role of chelates in nutrient availability.

Unit V

- 27. Common soil test methods for fertilizer recommendations to crops Blanket fertilizer recommendations, M&B approach, Multiple regression model, STCR methodology, usefulness and limitation.
- 28. &29 Common soil test methods for fertilizer recommendations to crops SSNM, critical limit, isotopic dilution method (Fried &Dean 'A' value, L and E value), Plant need based fertilizer management (LCC & nutrient deficiency)-methodology, usefulness and limitations; Tools for fertilizer recommendation DSSIFER &VDK.
- 30. Fertilizer use efficiency-definition, types and implications, integrated nutrient management (INM)
- 31. Soil fertility evaluation techniques nutrient deficiency symptoms, plant and tissue tests, biological methods, chemical soil tests.
- 32. Soil fertility evaluation approaches- critical limit, FCC, DRIS, Crop logging, Nutrient indexing concept, usefulness and limitations.
- 33. Speciality fertilizer-concept, need & category. Current status of speciality fertilizer use in soils and crops of India.
- 34. Soil health and soil quality-definitions, concepts and its relation to sustainable agriculture. Long term effects of fertilizer and soil quality.

PRACTICAL SCHEDULE

- 1. Methods of soil and plant sampling and its process for chemical analysis
- 2. Determination of soil pH, EC and organic carbon in soils
- 3. Estimation of available nitrogen in soil
- 4. Estimation of available phosphorus in soil

- 5. Estimation of available potassium in soil
- 6. Estimation of available calcium and magnesium in soils
- 7. Estimation of available sulphur in soils.
- 8. Estimation of available micronutrients in soil
- 9. Estimation of total nutrients in soil (major)
- 10. Estimation of total nutrients in soil (micro)
- 11. Analysis of plant samples for total nutrients-major nutrients (N,P& K)
- 12. Analysis of plant samples for total nutrients- secondary nutrients (Ca, S & Mg)
- 13. Analysis of plants for micronutrients content (Fe, Zn, Cu, Mn, B & Mo)
- 14. Workouts on Soil test calibrations for fertilizer prescriptions- Fertilizer calculation for
 Blanket recommendation, maximum and optimum yield based on multiple regression equation
- 15. Workouts on Soil test calibrations for fertilizer prescriptions- Fertilizer calculation for desired yield target based on Inductive cum targeted yield approach-STCR, STCR-IPNS
- 16. Workouts on Soil test calibrations for fertilizer prescriptions- Fertilizer calculation for maximum and optimum yield based on Mitscherlich and Bray approach.
- 17. Final practical examination.

LEARNING OUTCOME

Experience on the knowledge of soil fertility and fertilizers in relation to plant growth and development.

SUGGESTED READING

- Havlin, JL., Tisdale, SL., Nelson, WL & Beaton JD. 2017. Soil Fertility and Fertilizers-An introduction to Nutrient Management. 8th Ed. Pearson India Education Services, Pvt. Ltd.
- 2. Barker V Allen & Pilbeam David J. 2015. Handbook of Plant Nutrition. 2nd Ed. CRC/Taylor & Francis.
- Goswami, N., Rattan, R.K., Dev, G., Narayansamy, G., Das, D.K., Sanyal, S.K., Pal, D.K. and Rao, D.L.N. (Eds.). 2012. Fundamentals of Soil Science. Revised Edition. Indian Society of Soil Science Publ., New Delhi
- 4. Troeh FR & Thompson LM. 2005., Soils and Soil Fertility. 6thEdnBlackwell Publishers.
- 5. Brady NC & Weil RR. 2002. The Nature and Properties of Soils. 13thEd.PearsonEdu
- 6. Mengel K & Kirkby EA. 1982. Principles of Plant Nutrition. International Potash Institute, Switzerland
- 7. Prasad R & Power JF. 1997. Soil Fertility Management for Sustainable Agriculture. CRC
- 8. Stevenson FJ & Cole MA. 1999. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulphur, Micronutrients. John Wiley & Sons.
- 9. Kannaiyan S, Kumar K and Govindarajan K. 2004. Biofertilizers Technology. Scientific Publ.
- 10.Mortvedt JJ, Shuman LM, Cox FR and Welch RM. 1991. Micronutrients in Agriculture. 2nd Ed. SSSA, Madison.

SUGGESTED WEBSITES

- 1 www.agrimoon.com/soil-chemistry-soil-fertility-nutrient- management-pdf
- 2 https://apps.aoi.wsu.edu/onlineMedia/pdf_version/soils441_06_art(c151).pdf
- 3 https://doi.org/10.1016/S0378-4290(97)00124-X
- 4 www.wiley.com/wileycda/wileytitle/productcd-081380955x.html
- 5 soil5813.okstate.edu/Soil_Fertility_Handbook/soilfertilityhandbook2000.doc
- 6 https://www.nap.edu/read/2132/chapter/10#281
- 7. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/crops/?cid=nrcs
- 8 http://www.fao.org/3/a-a1595e.pdf
- 9. http://mvtl.com/_static/web/assets/media/pdf/soil-nutrient.pdf
- 10. http://vro.agriculture.vic.gov.au/dpi/vro/vrosite.nsf/pages/soil_mgmt_subsoil_pdf
- 11. http://www.knowledgebank.irri.org/ericeproduction/IV.4_SSNM.htm 10
- 12. http://soilquality.org/basics/sustainable.html

SOIL 503*

SOIL CHEMISTRY

2+1

AIM OF THE COURSE

To introduce the classical concepts of soil chemistry and to familiarize students with modern developments in chemistry of soils in relation to using soils as a medium for plant growth.

THEORY

Unit I

Chemical (elemental) composition of the earth's crust, soils, rocks and minerals. Elements of equilibrium thermodynamics, chemical equilibria, electro chemistry and chemical kinetics.

Soil colloids: inorganic and organic colloids - origin of charge, concept of point of zero-charge (PZC) and its dependence on variable-charge soil components, surface charge characteristics of soils; diffuse double layer theories of soil colloids

Unit II

Soil colloids: zeta potential, stability, coagulation/flocculation and peptization of soil colloids; electrometric properties of soil colloids; sorption properties of soil colloids; soil organic matter fractionation of soil organic matter and different fractions, Characterization of OM; clay - organic interactions. on exchange processes in soil; cation exchange- theories based on law of mass action (Kerr-Vanselow, Gapon equations, hysteresis, Jenny's concept).

Unit III

Adsorption isotherms, Donnan-membrane equilibrium concept, clay-membrane

electrodes and ionic activity measurement, thermodynamics, statistical mechanics; anion and lig and exchange-inner sphere and outer-sphere surface complex formation, fixation of oxyanions, hysteresis in sorption-desorption of oxy-anions and anions, shift of PZC on lig and exchange, AEC, CEC; experimental methods to study on exchange phenomena and practical implications in plant nutrition

Unit IV

Potassium, phosphate and ammonium fixation in soils covering specific and nonspecific sorption; precipitation-dissolution equilibria; Concept of quantity/intensity (Q/I relationship; step and constant-rate K); Chemistry of acid soils; active and potential acidity; lime potential, sub-soil acidity, chemistry of acid sulphate soils; management aspects

Unit V

Chemistry of salt-affected soils and amendments; soil pH, ECe, ESP, SAR and important relations; soil management and amendments. Chemistry and electrochemistry of submerged soils, geochemistry of micronutrients, environmental soil chemistry

PRACTICAL

Preparation of saturation extract, measurement of pH, EC, CO₃, HCO₃, Ca, Mg, K and Na, Determination of CEC and AEC of soils, Analysis of equilibrium soil solution for pH, EC, Eh by the use of Eh-pH meter and conductivity meter, Determination of point of zero-charge and associated surface charge characteristics by the serial potentiometric titration method, Extraction of humic substances, Potentiometric and conduct metric titration of soil humic and fulvic acids, (E4/E6) ratio of soil humic and fulvic acids by visible spectrophotometric studies and the D (E4/E6) values at two pH values, Adsorption-desorption of phosphate/sulphate by soil using simple adsorption isotherm, Construction of adsorption envelope of soils by using phosphate/fluoride/sulphate and ascertaining the mechanism of the ligand exchange process involved, Determination of titratable acidity of an acid soil by BaCl₂-TEA method, Determination of Q/I relationship of potassium, Determination of lime requirement of an acid soil by buffer method, Determination of gypsum requirement of an alkali soil.

LECTURE SCHEDULE

Unit I

- 1. Chemical (elemental) composition of the earth's crust, soils, rocks and minerals.
- 2. Elements of equilibrium, thermodynamics, chemical equilibria
- 3. Electro chemistry and chemical kinetics.
- 4. Soil colloids: inorganic and organic colloids, Origin of charge, concept of point of zerocharge (PZC) and its dependence on variable-charge
- 5. Soil components, surface recharge characteristics of soils
- 6. Diffuse double layer theories of soil colloids

Unit II

7. Zetapotential, stability, coagulation/flocculation and peptization of soil colloids

- 8. Electro metric properties of soil colloids; sorption properties of soil colloids
- 9. Soilorganicmatter-fractionationofsoilorganicmatteranddifferentfractions,
- 10. Characterization of organic matter
- 11. Clay-organic interactions.
- 12. Ion exchange processes in soil
- 13. Cation exchange theories based on law of mass action
- 14. Kerr-Vans low, Gapon equations, hysteresis, Jenny's concept

Unit III

- 15. Adsorption isotherms, Donnan-membrane equilibrium concept
- 16. Clay-membrane electrodes and ionic activity measurement, thermodynamics, statistical mechanics

17. Mid-Semester Examination

- 18. Anionandligandexchange-innersphereandouter-spheresurfacecomplexformation
- 19. Fixation of oxy anions, hysteresis in sorption-desorption of oxy-anions and anions
- 20. Shift of PZC on ligand exchange
- 21. AEC and CEC
- 22. Experimentalmethodstostudyionexchangephenomenaandpracticalimplicationsin plant nutrition

Unit IV

- 23. Potassium, phosphate and ammonium fixation in soils covering specific and non specific sorption
- 24. Precipitation-dissolution equilibria
- 25. Concept of quantity/intensity
- 26. Q/I relationship; step and constant-rate K, management aspect
- 27. Chemistry of acid soils, active and potential acidity, Sub-soil acidity
- 28. Lime potential, Chemistry of acid sulphate soils
- 29. Management of acid and acid sulphate soils and amendments.

Unit V

- 30. Chemistry of salt-affected soils
- 31. Soil pHe, ECe, ESP, SA Rand its relations
- 32. Salt affected soil management and amendments
- 33. Chemistry and electrochemistry of submerged soils
- 34. Geochemistry of micronutrients, environmental soil chemistry

PRACTICAL SCHEDULE

- 1. Preparation of saturation extract
- 2. Determination of pH, EC, CO_3^{2-} , HCO_3^{-} , in saturation extract
- 3. Measurement of Ca, Mg, K and Nain saturation extract
- 4. Determination of CEC in soils
- 5. Determination of AEC in soils
- 6. Analysis of equilibrium soil solution for pH, EC, Eh by Eh-pH meter and EC meter

- 7. Determinationofpointofzero-chargeandassociatedsurfacechargecharacteristicsby the serial potentiometric titration method
- 8. Extraction of humic substances
- 9. Potentiometricandconductometrictitrationofsoilhumicandfulvicacids
- 10. (E4/E6) ratio of soil humi cand fulvic acids by visible spectrophotometric studies and D(E4/E6) values at two pH values
- 11. Adsorption-desorptionofphosphate/sulphatebysoilusingsimpleadsorptionisotherm
- 12. Constructionofadsorptionenvelopeofsoilsbyusingphosphate/fluoride/sulphateandascer tainingthemechanismoftheligand exchange process involved,
- 13. Determination of titratable acidity of an acid soil by Ba Cl₂ TEA method
- 14. Determination of Q/I relationship of potassium
- 15. Determination of lime requirement of an acid soil by buffer method,
- 16. Determination of gypsum requirement of an alkali soil.
- 17. Final practical examination

LEARNING OUTCOME

Experience on the knowledge of chemical behaviour of soil and their utility in research for solving field problem.

SUGGESTED READING

- 1. BearR.E.1964.Chemistry of the Soil. Oxford and IBH.
- 2. BoltG.H and Bruggenwert M.G.M. 1978. Soil Chemistry. Elsevier.
- 3. Greenland D.J. and Hayes M.H.B. 1981. Chemistry of Soil Processes. John Wiley & Sons.
- 4. Greenland D.J. and Hayes MH.B. Chemistry of Soil Constituents. John Wiley & Sons.
- 5. McBrideM.B. 1994. Environmental Chemistry of Soils. Oxford University Press.
- 6. SpositoG. 1981. The Thermo dynamics of Soil Solutions. Oxford University Press.
- 7. SpositoG. 1984. The Surface Chemistry of Soils. Oxford University Press.
- 8. Sposito G. 1989. The Chemistry of Soils. Oxford University Press.
- 9. StevensonF.J.1994. Humus Chemistry. 2ndEd. John Wiley & Sons.
- 10. VanOlphanH.1977. Introduction to Clay Colloid Chemistry. John Wiley & Sons.

SUGGESTED WEBSITES

- 1. http://www.edu.pe.ca/agriculture/soil.pdf
- 2. http://www.eolss.net/sample-chapters/c06/e6-13-03-00.pdf
- 3. http://www.norcoag.com/ag-and-soil-chemistry/
- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.431.331&rep=rep1&type= pdf

SOIL 504* SOIL MINERALOGY, GENESIS AND CLASSIFICATION 2+1

AIM OF THE COURSE

To acquaint students with basic structure of alumino-silicate minerals and genesis of clay minerals; soil genesis in terms of factors and processes of soil formation, and to enable students conduct soil survey and interpret soil survey reports in terms of land use planning

THEORY

Unit I

Fundamentals of crystallography, Importance of crystal chemistry, crystal lattice, space lattice, Types of crystal systems, Isomorphism and polymorphism, Comparison of crystal structures, Coordination number, Coordination and Pauling's rules, coordination theory, Silicate structures and structural formula, Stability of minerals and bond strength.

Clay minerals: classification, structure, chemical composition and properties, genesis and transformation of crystalline and non-crystalline clay minerals

Unit II

Clay minerals; identification techniques; amorphous soil constituents and other noncrystalline silicate minerals and their identification.

Clay minerals in Indian soils, role of clay minerals in plant nutrition, interaction of clay with humus, pesticides and heavy metals.

Unit III

Factors of soil formation, soil formation models; soil forming processes; weathering of rocks and mineral transformations

Unit IV

Soil profile; weathering sequences of minerals with special reference to Indian soils. Concept of soil individual; Soil classification systems-historical development

Unit V

Modern systems of soil classification with special emphasis on soil taxonomy; soil classification, soil mineralogy and soil maps–usefulness.

PRACTICAL

- Identification and quantification of minerals in soil fractions
- Quantification of minerals in soil fractions
- Morphological properties of soil profile in different landforms
- Separation of soil fractions
- Estimation of physical and chemical properties
- Classification of soils using soil taxonomy

- Calculation of weathering indices
- Identification and quantification of soil clay minerals (XRD), Grouping of soils using available data base in terms of soil quality
- Soil Maps: Preparation and Interpretation.

LECTURE SCHEDULE

Unit I

- 1. Fundamentals of crystallography, Importance of crystal chemistry, crystal lattice, space lattice, Types of crystal systems, Isomorphism and polymorphism
- 2. Comparison of crystal structures, Coordination number, Coordination and Pauling's rules, coordination theory
- 3. Silicate structures and structural formula, Stability of minerals and bond strength
- 4. Classification, structure, chemical composition and properties of clay minerals- I
- 5. Classification, structure, chemical composition and properties of clay minerals- II
- 6. Genesis and transformation of crystalline clay minerals
- 7. Genesis and transformation of non-crystalline clay minerals

Unit II

- 8. Identification techniques of clay minerals
- 9. Amorphous soil constituents and other non-crystalline silicate minerals
- 10. Identification of amorphous soil constituents and other non-crystalline silicate minerals
- 11. Clay minerals in Indian soils and role of clay minerals in plant nutrition.
- 12. Interaction of clay with humus, pesticides and heavy metals.

Unit III

- 13. Factors of soil formation- Active and passive factors of soil formation
- 14. Soil formation models- The soil landscape model and pedogenesis models
- 15. Soil forming processes fundamental soil forming process
- 16. Soil forming processes -specific soil forming process

17. Mid semester examination

- 18. Weathering of rocks and minerals- physical
- 19. Weathering of rocks and minerals- chemical
- 20. Weathering of rocks and minerals- biological
- 21. Soil Mineral transformations

Unit IV

- 22. Soil profile- Master horizons, subordinate horizons, sub divisions and lithological discontinuity
- 23. Weathering sequences of minerals with special reference to Indian soils
- 24. Concept of soil individual- pedon and polypedon
- 25. Historical developments and modern systems of soil classification
- 26. Soil classification systems

Unit V

- 27. Soil taxonomy- Soil diagnostic horizons- Epipedons
- 28. Soil taxonomy- Soil diagnostic horizons- Endopedons
- 29. Soil taxonomy nomenclature, structure application of differentiating criteria
- 30. Soil orders salient features and differentiating properties –I
- 31. Soil orders salient features and differentiating properties -II
- 32. Criticism, advantages and applications of soil taxonomy
- 33. Soil mineralogy
- 34. Usefulness soil maps

PRACTICAL SCHEDULE

- 1. Identification and quantification of minerals in soil fractions
- 2. Morphological properties of soil profile in different landforms
- 3. Morphological properties of soil profile in different landforms
- 4. Morphological properties of soil profile in different landforms
- 5. Separation of soil fractions -I
- 6. Separation of soil fractions -II
- 7. Estimation of physical and chemical properties -I
- 8. Estimation of physical and chemical properties -II
- 9. Determination of CEC I
- 10. Determination of CEC, BSP and ESP II
- 11. Classification of soils using soil taxonomy
- 12. Calculation of weathering indices and its application in soil formation
- 13. Identification and quantification of soil clay minerals –X ray Diffraction Analysis
- 14. Grouping of soils using available data base in terms of soil quality
- 15. Soil Maps Preparation and Interpretation
- 17. Final practical examination

LEARNING OUTCOME

Experience on the knowledge of soil taxonomy and genesis and and their utility in research for solving field problem.

SUGGESTED READING

- 1. Brady NC & Weil RR. 2002. The Nature and Properties of Soils. 13th Ed. Pearson Edu.
- 2. Buol EW, Hole ED, MacCracken RJ & Southard RJ. 1997. Soil Genesis and Classification. 4th Ed. Panima Publ.
- 3. Dixon JB & Weed SB. 1989. Minerals in Soil Environments. 2nd Ed. Soil Science Society of America, Madison.
- 4. Grim RE. 1968. Clay Mineralogy. McGraw Hill.
- 5. Indian Society of Soil Science 2002. Fundamentals of Soil Science. ISSS, New Delhi.
- 6. Sehgal J. 2009. A textbook of Pedology: Concepts and applications. Kalyani publishers, New Delhi.
- 7. USDA. 1999. Soil Taxonomy. Hand Book No. 436. 2nd Ed. USDA NRCS, Washington.

- 8. Wade FA & Mattox RB. 1960. Elements of Crystallography and Mineralogy. Oxford & IBH.
- 9. Wilding LP & Smeck NE. 1983.Pedogenesis and Soil Taxonomy: II. The Soil Orders. Elsevier. 1515
- 10. Wilding NE & Holl GF. (Eds.). 1983. Pedogenesis and Soil Taxonomy. I. Concept and Interaction. Elsevier.

SUGGESTED WEBSITES

- 1. http://www.xtal.iqfr.csic.es/Cristalografia/cascara-en.html
- 2. https://www3.nd.edu/~amoukasi/CBE30361/Lecture__crystallography_A.pdf
- 3. http://www.oakton.edu/user/4/billtong/eas100/clays.html
- 4. https://landscape.soilweb.ca/
- 5. https://archive.is/0bSsj
- 6. http://www.fao.org/wairdocs/ilri/x5546e/x5546e04.htm
- http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/?cid=nrcs142p2 _0535 62
- 8. http://www.css.cornell.edu/faculty/dgr2/teach/ssm/SSM_LectureNotes2.pdf
- 9. http://edafologia.ugr.es/comun/congres/cartart.htm

SOIL 505	SOIL EROSION AND CONSERVATION	2+1
JUIL JUJ	SOIL EROSION AND CONSERVATION	

AIM OF THE COURSE

To enable students to understand various types of soil erosion and measures to be taken for controlling soil erosion to conserve soil and water.

THEORY

Unit I

Definition, History of soil erosion, distribution, Nature and extent soil erosion in India Identification and description of soil erosion problems in India. Causes of soil erosion; Forms of soil erosion; effects of soil erosion and factors inducing soil erosion; types and mechanisms of water, wind and glaciers.

Unit II

Universal soil loss equation – defining all parameters and its use; rainfall erosivity and soil erodibility - estimation as EI30 index and kinetic energy; factors affecting water erosion; empirical and quantitative estimation of water erosion; methods of measurement and prediction of runoff; soil losses in relation to soil properties and precipitation. Eutrophication of water bodies; Wind erosion- types, mechanisms and factors affecting wind erosion; extent of problem in the country; Wind erosion equation. Management of soil and nutrient losses through wind erosion.

Unit III

Principles of erosion control; Methods of wind and water erosion control, Erosion control measures – agronomical and mechanical; vegetative measures like strip cropping, crop rotation, afforestation, agrostological technique, etc. and mechanical measures like bunds, graded bunds, contour bunding (Contour continuous trench and contour staggered trench), gully plugging, terracing, etc. Conservation farming system. Reclamation of ravine lands and dune stabilization. Erosion control structures - their design and layout. Shifting cultivation–principles, extent and impact. Grazing and its impact on soil erosion. Forest fire and soil erosion. Control measures of grazing and forest fire.

Unit IV

Methods of soil conservation- soil conservation planning; land capability classification; soil conservation in special problem areas such as hilly, arid and semi-arid regions, waterlogged and wet lands.

Watershed management - concept, definition, objectives and approach; Importance of watershed management and its role in conservation of natural resources – soil, water and vegetation. Watershed guidelines; water harvesting and recycling.

Unit V

Watershed guidelines; flood control in watershed management; socioeconomic aspects of watershed management; case studies in respect to monitoring and evaluation of watersheds.

PRACTICAL

Determination of texture and structure of soil. Measuring soil plasticity, penetrability, porosity etc. Measurement of flow of runoff water. Collection and quality analysis of runoff water. Calculating dispersion ratio, suspension percentage, erosion ratio, clay ratio, clay/moisture equivalent ratio, percolation ratio, Determination of different soil erodibility indices. Measuring rainfall and calculating rain drop erodibility index, Computation of kinetic energy of falling rain drops. Computation of rainfall erosivity index (EI30) using rain gauge data. Land capability classification of a watershed. Identification of different grasses used for soil conservation. Visit to watersheds.

LECTURE SCHEDULE

Unit I

- 1. Soil erosion: Definition, History, distribution, Nature and extent soil erosion in India.
- 2. Identification and description of soil erosion problems in India.
- 3. Causes of soil erosion.
- 4. Forms of soil erosion- Effects of soil erosion- its impact on environment and biosphere Factors affecting soil erosion.
- 5. Causes, types and mechanisms of soil erosion by water, wind and glaciers.

Unit II

- 6. Rain drops and soil erosion, Universal soil loss equation: defining all parameters and its use.
- 7. Rainfall erosivity and soil erodibility Estimation as EI30 index and kinetic energyfactors affecting water erosion.
- 8. Empirical and quantitative estimation of water erosion.
- 9. Methods of measurement and prediction of runoff.
- 10. Soil losses in relation to soil properties and precipitation. Eutrophication of water bodies.
- 11. Wind erosion- Types, mechanisms of wind erosion, factors affecting wind erosion wind erosion equation.
- 12. Wind erosion -Extent of problem in the country and management of soil and nutrient losses. Wind erosion equation. Management of soil and nutrient losses through wind erosion.

Unit III

- 13. Principles of erosion control- Methods of wind and water erosion controlagronomical and mechanical.
- 14. Soil erosion control– Vegetative measures like strip cropping, crop rotation, afforestation, agrostological technique, etc.
- 15. Mechanical measures like bunds, graded bunds, contour bunding (Contour continuous trench and contour staggered trench), gully plugging, terracing, etc.
- 16. Conservation farming system -Reclamation of ravine lands-Sand dune stabilization
- 17. Mid semester examination
- 18. Erosion control structures their design and layout.
- 19. Shifting cultivation–Principles, extent and its impact.
- 20. Grazing and its impact on soil erosion.
- 21. Forest fire and soil erosion-Control measures of grazing and forest fire.

Unit IV

- 22. Methods of soil conservation-Soil conservation planning- land capability classification.
- 23. Soil conservation in special problem areas such as hilly, arid and semi-arid regions, waterlogged and wet lands.
- 24. Concept and definition of watershed, classification of watershed, shape and nature.
- 25. Importance of watershed management and its role in conservation of natural resources soil, water and vegetation.
- 26. Watershed guidelines.
- 27. Concept of water harvesting and runoff recycling.

Unit V

- 28. Preparation of watershed management plan.
- 29. Selection of pond size and design of a pond, sedimentation problem in watershed,
- 30. Seepage control, watershed management for runoff and sediment control.
- 31. Flood control in watershed management.
- 32. Case studies in respect to monitoring and evaluation of watersheds

- 33. Socio economic aspects of watershed management.
- 34. Application of remote sensing data in agriculture with special emphasis on soil and water conservation

PRACTICAL SCHEDULE

- 1. Determination of texture of the soil.
- 2. Determination of texture of the soil.
- 3. Identification of structure of the soil.
- 4. Measuring soil plasticity.
- 5. Assessment of Penetrability.
- 6. Determination of porosity in soil.
- 7. Measurement of flow of runoff water.
- 8. Collection and quality analysis of runoff water.
- 9. Calculating dispersion ratio, suspension percentage, erosion ratio, clay ratio, clay/moisture equivalent ratio and percolation ratio.
- 10. Determination of different soil erodibility indices.
- 11. Measuring rainfall and calculating rain drop erodibility index.
- 12. Computation of kinetic energy of falling rain drops.
- 13. Computation of rainfall erosivity index (EI30) using rain gauge data.
- 14. Land capability classification of a watershed.
- 15. Identification of different grasses used for soil conservation.
- 16. Visit to watersheds.
- 17 Final practical Examination

LEARNING OUTCOME

Experience on the knowledge of soil conservation and their utility in research forsolving field problem.

SUGGESTED READING

- 1. Mal, B.C. (1994). Introduction to Soil and Water Conservation Engineering, Kalyani Publishers, New Delhi, India
- 2. Mal, B.C. (1995). Introduction to Soil and Water Conservation Engineering, Kalyani Publishers, New Delhi.
- 3. Mohandas, G. (2000). Hydrology and Soil Conservation Engineering, Prentice Hall of India, New Delhi, India.
- 4. Murthy, V.V.N. (1994). Land and Water Management Engineering, Kalyani Publishers, New Delhi.
- 5. Murty, V.V.N. and Jha, M.K. (2011). Land and Water Management Engineering. Sixth Edition, Kalyani Publishers, Ludhiana.
- 6. Schwab et al., 1981, Soil and Water Conservation Engineering, Fourth Edition, Republic of Singapore: John Wiley & Sons, Inc., pp.97-104.

- 7. Sharda, V.N., Juyal, G.P., Prakash, C. and Joshi, B.P. (2007). Soil And Water Conservation Engineering (Training Manual-volume II), CSWCRTI, Dehradun, India.
- 8. Sheng, C.T. (2002). Bench Terrace Design Made Simple, 12th ISCO Conference, Beijing.
- Subramanya, K., 2008, Engineering Hydrology, Third Edition, New Delhi: Tata McGraw-Hill, pp.374-379. 10 Suresh, N. (2009). Soil and Water Conservation Engineering, Standard Publishers, New Delhi.
- 10. Foster, G. R., D. K. McCool, K. G. Renard and W. C. Moldenhauer, 1981, Conversion of the Universal Soil Loss Equation to SI metric units. Journal of Soil and Water Conservation 36(6): 355-359.
- 11. McCool DK, Brown LC, Foster GR, Mutchler CK, Mayer LD, 1987, Revised slope steepness factor for the Universal Soil Loss Equation, Trans ASAE 30: 1387–1396.
- 12. Narayana, V. V. Dhruva, 2002, Soil and water conservation research in India, ICAR, New Delhi, pp. 30-56.
- Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder (Coordinators), 1995, Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), U.S. Department of Agriculture, Agriculture Handbook No. 703.
- Singh, G., Ram Babu, and Subhash Chandra, 1981, Soil loss prediction research in India, 1520 Central Soil and Water Conservation Research & Training Institute, Dehradun, Bull. No. T12/D-9, pp. 70

SUGGESTED WEBSITES

- 1. https://www.geographyandyou.com/climate-change/environment/soil-erosionandconservation-in-india/
- 2. http://www.omafra.gov.on.ca/english/engineer/facts/12-053.htm
- 3. <u>http://www.soilmanagementindia.com/wind-erosion/wind-erosion-factors-types-and</u>control/1522
- 4. http://milford.nserl.purdue.edu/weppdocs/overview/wndersn.html
- 5. <u>http://www.soilmanagementindia.com/wind-erosion/mechanics-of-wind-erosion-3-phases</u>soil-management/15135
- 6. <u>http://www.agriinfo.in/default.aspx?page=topic&superid=8&topicid=75</u>
- 7. http://www.academia.edu/27857762/WATERSHED_MANAGEMENT_CONCEPT
- 8. <u>www.yourarticlelibrary.com/watershed-management/watershed-management-</u> <u>meaning</u>types-steps-and-programmes/7730

SOIL 506 SOIL BIOLOGY AND BIOCHEMISTRY (2+1)

2+1

AIM OF THE COURSE

To teach students the basics of soil biology and biochemistry, including biogeochemical cycles, plant growth promoting rhizobacteria, microbial interactions in soil and other soil activities.

THEORY

Unit I

Soil biota, soil microbial ecology, types of organisms in different soils; soil Microbial biomass; microbial interactions; un-culturable soil biota. Microbial communities in agricultural systems. Role of soil organisms in pedogenesis. Microbiology of root-soil interface

Unit II

Biochemistry of root-soil interface; phyllosphere; soil Enzymes, origin, activities and importance; soil characteristics influencing growth and activity of microflora; Root rhizosphere and PGPR. Antibiotic production in soil. Microbial transformations of nitrogen, phosphorus, sulphur in soil

Unit III

Microbial transformations of iron and manganese in soil; biochemical composition and biodegradation of soil organic matter and crop residues, microbiology and biochemistry of decomposition of carbonaceous and protenaceous materials, cycles of important organic nutrient. Humus formation theories.

Unit IV

Organic wastes and their use for production of biogas and manures; microbial toxins in the soil. Bioremediation of contaminated soils; Bio degradation of pesticide. Preparation and preservation of farm yard manure.

Unit V

Preparation and preservation of animal manures, rural and Urban composts and vermicompost. Biofertilizers – definition, classification, specifications, method of production and role in crop production; FCO specifications and quality control of organic manures and biofertilizers.

PRACTICAL

Determination of soil microbial population- microbial biomass – components of soil organic matter – Organic matter fractionation- Functional groups – Enzyme activity – N fixation - sulphur oxidation- Phosphorus solubilisation- Mineralisation of Zn – Study of Rhizosphere and non-rhizosphere microflora

LECTURE SCHEDULE

Unit I

- 1. Soil biota
- 2. Soil microbial ecology- Types of organisms in soils Microbial Ecology Diversity of Microbial Habitats.
- 3. Soil microbial biomass Definition –factors affecting SMB Biogeochemical process Vs SMB.
- Microbial interactions Beneficial Interactions Mutualism Commensalism Proto-Cooperation – Harmful Interactions – Antagonism - Ammensalism – Competition -Parasitism- Predation
- 5. Un-culturable soil biota –resuscitation of unculturable soil biota
- 6. Biotic factors in soil development
- 7. Microbiology of root-soil interface Rhizhosphere and its influence in soil propertiesquorum sensing in root – soil interface.

Unit II

- 8. Biochemistry of root-soil interface rhizode position compounds released by exudates ethylene siderophore production.
- 9. Soil enzymes- Origin and activities. Role of soil Enzymes as indicators of Nutrient dynamics and soil fertility and importance
- 10. Phyllosphere classification biochemical relation to phyllosphere phytoalexins phyllosphere microbial communities
- 11. Soil characteristics influencing growth and activity of microflora pH, nutrient levels, water holding capacity
- 12. Microbial transformations of nitrogen in soil
- 13. Microbial transformations of phosphorus in soil
- 14. Microbial transformations of sulphur in soil

Unit III

- 15. Microbial transformations of iron in soil
- 16. Microbial transformations of manganese in soil
- 17. Mid semester examination
- 18. Organic and inorganic fractions of soil organic matter and crop residues
- 19. Biochemical composition and Biodegradation of soil Organic matter
- 20. Biochemical composition and biodegradation of crop residues and its management
- 21. Cycles of important organic nutrient
- 22. Humus formation Factors influencing Humus formation theories

Unit IV

- 23. Decomposition of different components Final products of decomposition Factors affecting decomposition
- 24. Biodegradation of pesticides
- 25. Biodegradation of organic wastes their use for production of biogas and manures
- 26. Bioremediation of contaminated soils
- 27. Microbial toxins in the soil Types of microbial toxins Activates and role

28. Preparation and preservation of farmyard manure

Unit V

- 29. Preparation and preservation of animal manures
- 30. Preparation and preservation of rural and urban composts
- 31. Preparation and preservation of vermicompost.
- 32. Biofertilizers definition, classification, specifications
- 33. Biofertilizers -method of production
- 34. Biofertilizers –role in crop production.

PRACTICAL SCHEDULE

- 1. Determination of soil microbial population
- 2 Determination of Soil microbial biomass carbon of organic matter
- 3 Determination of Soil microbial biomass nitrogen of organic matter
- 4 Fractionation of organic matter Humic, Fulvic acid and Humin
- 5 Fractionation of organic matter CONTINUED
- 6 Determination of functional groups of organic matter- Fats, waxes, resins, hot water soluble carbon, hemi cellulose, cellulose and lignin
- 7 Determination of functional groups of organic matter- Fats, waxes, resins, hot water soluble carbon, hemi cellulose, cellulose and lignin CONTINUED
- 8 Determination of Soil enzymes Urease, Dehydrogenase and phosphatase
- 9 Determination of Soil enzymes CONTINUED
- 10 Measurement of soil microbial processes: Ammonification
- 11. Measurement of soil microbial processes Nitrification
- 12 Measurement of soil microbial processes: N₂ fixation
- 13 Measurement of soil microbial processes: S oxidation
- 14 Measurement of soil microbial processes: P solubilization
- 15 Measurement of soil microbial processes: Mineralization of Zn
- 16. Study of Rhizosphere and non- rhizosphere microflora
- 17. Final practical examination

LEARNING OUTCOME

Experience on the knowledge of soil microbes and their utility in research for solving field problem.

SUGGESTED READING

- 1. Alexander M. 1977. Introduction to Soil Microbiology. John Wiley & Sons.
- 2. Burges A & Raw F. 1967. Soil Biology. Academic Press.
- 3. McLaren AD & Peterson GH. 1967. Soil Biochemistry. Vol. XI. Marcel Dekker
- 4. Metting FB. 1993. Soil Microbial Ecology Applications in Agricultural and Environmental Management.
- 5. Paul EA & Ladd JN. 1981. Soil Biochemistry. Marcel Dekker.
- 6. Reddy MV. (Ed.). Soil Organisms and Litter in the Tropics. Oxford & IBH.

- 7. Russel RS. 1977. Plant Root System: Their Functions and Interaction with the Soil. ELBS & McGraw Hill.
- 8. Stotzky G & Bollag JM. 1993. Soil Biochemistry. Vol. VIII. Marcel Dekker.
- 9. Sylvia DN. 2005. Principles and Applications of Soil Microbiology. Pearson Edu.
- 10. Wild A. 1993. Soil and the Environment An Introduction. Cambridge Univ. Press

SUGGESTED WEBSITES

- 1. <u>http://www.kore.no/wp-content/uploads/2017/12/The-Role-of-Soil-Biology-in</u>-CropNutrition-FVC-Final-1.pdf
- 2. <u>http://www.dpi.nsw.gov.au/ data/assets/pdf file/0005/166919/soil-biology-agriculture.pdf</u>
- 3. <u>http://eagri.org/eagri50/SSAC222/lec17.pdf</u>
- 4. http://eagri.org/eagri50/AMBE101/pdf/lec17.pdf
- 5. http://www.aloki.hu/pdf/1301 147169.pdf
- 6. https://www.researchgate.net/publication/314213236 Soil Enzymes
- 7. https://www.springer.com/cda/content/document/cda/9783642142246-c1.pdf
- 8. <u>https://www.researchgate.net/publication/314263435</u>

SOIL 507 RADIOISOTOPES IN SOIL AND PLANT STUDIES 1+1

AIM OF THE COURSE

To train students in the use of radio isotopes in soil and plant research.

THEORY

Unit I

Atomic structure, radio activity and units; radio isotopes-properties and decay principles; nature and properties of nuclear radiations; interaction of nuclear radiations with matter, artificial radioactivity

Unit II

Principles and use of radiation monitoring instruments-Personal Dosimeter, Geiger Muller counter, solid and liquids scintillation counters; neutron moisture meter, mass spectrometry, autoradiography

Unit III

Isotopic dilution techniques used in soil and plant research; use of stable isotopes

Unit IV

Application of isotopes in studies on organic matter, nutrient transformation, ion transport, rooting pattern and fertilizer use efficiency; carbon dating

Unit V

Doses of radiation exposure, radiation safety aspects, regulatory aspects, collection, storage and disposal of radioactive wastes

PRACTICAL

Storage and handling of radioactive materials
 Determination of half-life and decay constant
 Preparation of soil and plant samples for radioactive measurements
 Setting up of experiment on fertilizer use efficiency and cation exchange equilibria using radio isotopes
 Determination of A, E and L values of soil using ³²P/⁶⁵Zn
 Use of neutron probe for moisture determination
 Sample preparation and measurement of 15N enrichment by mass spectrophotometery / emission spectrometry

LECTURE SCHEDULE

Unit I

- 1. Atomicstructureandatomictheories-Nucleus-Constituentsandproperties.
- 2. Radio activity and units of radioactivity
- 3. Radioactive decay: reasons and types. Nature and properties of nuclear radiations (alpha, beta and gamma)
- 4. Interaction of nuclear radiations with matter (alpha, beta and gamma) and artificial radioactivity.

Unit II

- 5. Principles and use of radiation monitoring instruments–Personal Dosimeter, Geiger Muller counter, Neutron moisture meter.
- 6. Solid and liquid scintillation counters.
- 7. Mass spectrometry and autoradiography Principles and application

8. Mid-semester examination

Unit III

- 9. Isotopic dilution techniques used in soil and plant research
- 10. Stable isotopes as tracers, with special reference to¹⁵N-concepts of percent abundance and atom excess.
- 11. Stable isotopes experimental techniques sample processing- measurement by mass spectrometry and emission spectrometry.

Unit IV

- 12. Application of isotopes instudies on organic matter and nutrient transformation
- 13. Application of isotopes in studies on ion transport, rooting pattern and fertilizer use efficiency
- 14. Carbon dating studies

Unit V

- 15. Radiation exposure-doses, types and ways and means for minimization
- 16. Radiation safety and regulatory standards
- 17. Collection, storage and disposal of radioactive wastes

PRACTICAL SCHEDULE

- 1. Special features of a Radioisotope Laboratory
- 2. Storage and handling of radioactive materials, decontamination and monitoring of radioactivity
- 3. Management of radioactive wastes
- 4. Determination of half-life
- 5. Determination of decay constant
- 6. Preparation of soil samples for radioactive measurements
- 7. Preparation of plant samples for radioactive measurements
- 8. Preparation of labelled fertilizers
- 9. Setting up experiments on Fertilizer Use Efficiency
- 10. Visit to radioisotope tracer laboratory
- 11. Setting up experiments on cation exchange equilibria using radio isotopes
- 12. Setting up experiments on anion exchange equilibria using radio isotopes
- 13. Determination of A, E and L values of soil using ³²P/⁶⁵Zn
- 14. Use of neutron probe for moisture determination
- 15. Sample preparation for mass spectrometry
- 16. Measurement of ¹⁵Nenrichment by mass spectrometry/emission spectrometry

17. Final practical examination

LEARNING OUTCOME

Experience on the knowledge of radio activity and their utility in research for solving field problems.

SUGGESTED READING

- 1. ComerCL. 1955. Radioisotopes in Biology and Agriculture: Principles and Practice. Tata Mc GrawHill.
- 2. GlasstoneS. 1967. Source Book on Atomic Energy. East West Press.
- 3. IAEA. 2001. Use of isotope and radiation methods in soil and water management and crop nutrition. Training Course Series.No.14. IAEA, Austria.
- 4. L'Annuziata, M.FandJ.D.Legg. 1984. Isotopesand Radiation in Agricultural Sciences. Vol. I. Academic press, London. 1226
- 5. L'Annuziata, M.FandJ.D.Legg. 1984. Isotopesand Radiation in Agricultural Sciences. Vol. II . Academic press, London.
- 6. Michael F L and Annunziata. 2003. Hand book of Radioactivity Analysis. Academic press, London.
- 7. Sood, D.D., N.Ramamoorthyand A.V.R.Reddy. 1994. Principles of Radiochemistry. Indian Association of Nuclear Chemists and Allied Scientists. BARC. Mumbai.
- 8. Sood, D.D. 1996. Nuclear Materials. Indian Association of Nuclear Chemists and Allied Scientists. BARC. Mumbai.
- 9. Subbiah, B.V., Das, B.K., M.SSachdev. 1994. Isotopes in Soil-PlantNutrition, ICARPub.
- 10. Vose, P.B. 1980. Introduction to Nuclear Techniques in Agronomy and Plant Biology. Pergamon press, New York.

SUGGESTED WEBSITES

- 1. https://www.iaea.org/publications
- 2. http://www.iancas.org/bulletins.htm
- 3. http://www.iancas.org/publications.html
- 4. https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/nph.12227
- 5. https://www.nap.edu/download/18670

SOIL 508SOIL, WATER AND AIRPOLLUTION2+1

AIM OF THE COURSE

To make the students aware of the problems of soil, water and air pollution associated with use of soils for crop production.

THEORY

Unit I

Concepts of pollution, causes of environmental pollution. Soil, water and air pollutionproblems associated with agriculture, nature and extent.

Unit II

Nature and sources of pollutants–agricultural, industrial, urban wastes, fertilizers and pesticides, acid rains, oil spills etc.; air, water and soil pollutants- their CPC standards and effect on plants, animals and human beings.

Unit III

Sewage and industrial effluents-their composition and effect on soil properties/ health, and plant growth and human beings; soil as sink for waste disposal. Pesticides-their classification, behaviour in soil.

Unit IV

Pesticides - effect on soil microorganisms. Toxic elements—their sources, behaviour in soils, effect on nutrient availability, effect on plant and human health. Pollution of water resources due to leaching of nutrients and pesticides from soil.

Unit V

Emission of greenhouse gases—carbon dioxide, methane and nitrous oxide. Risk assessment of polluted soil, Remediation/ amelioration of contaminated soil and water; remote sensing applications in monitoring and management of soil and water pollution.

PRACTICAL

Sampling of sewage waters, sewage sludge, solid/ liquid industrial wastes, polluted soils and plants and their processing, Estimation of dissolved and suspended solids, chemical

oxygen demand (COD), biological demand (BOD), measurement of coliform (MPN), nitrate and ammoniacal nitrogen and phosphorus, heavy metal content in effluents, Heavy metals in contaminated soils and plants, Management of contaminants in soil and plants to safe guard food safety, Air sampling and determination of particulate matter and oxides of sulphur, NO₂ and O₂ conc. Visit to various industrial sites to study the impact of pollutants on soil and plants.

LECTURESCHEDULE

Unit I

- 1. Pollution–Concepts of pollution, causes of environmental pollution.
- 2. Pollution pollutants-definitions-different types of pollution.
- 3. Soil pollution problem associated with agriculture
- 4. Water and air pollution problems associated with agriculture
- 5. Nature and extent of soil, water and air pollution

Unit II

- 6. Nature and sources of pollutants-pollution duet agricultural wastes
- 7. Nature and sources of pollutants-pollution due to industrial and urban wastes
- 8. Nature and sources of pollutants–pollution due to fertilizers, pesticides, herbicides, fungicides and other agro chemicals.
- 9. Nature and sources of pollutants-pollution due to acid rains, oil spills, heavy metal, radiation
- 10. Soil, water and air pollutants-their CPC standards, Effect of pollution on plants
- 11. Effect of pollution on animals
- 12. Effect of pollution on human beings.

Unit III

- 13. Sewage and industrial effluents-composition
- 14. Sewage and industrial effluents-effect on soil properties / health
- 15. Sewage and industrial effluents-effect on plant growth
- 16. Sewage and industrial effluents- effect on human beings

17. Midsemester examination

- 18. Soil as sink for waste disposal
- 19. Pesticides– Definitions and classifications.
- 20. Pesticides-behaviour in soils.

Unit IV

- 21. Effect of pesticides on soil microorganisms
- 22. Toxic elements-sources
- 23. Toxic elements-behaviour in soils
- 24. Effect of toxic elements on nutrient availability
- 25. Effect of toxic elements on plant
- 26. Effect of toxic elements on human health
- 27. Pollutionofwaterresourcesduetoleachingofnutrientsandpesticidesfromsoil.

Unit V

- 28. Greenhouse gases-definition, ranges in atmosphere, causes
- 29. Emission of greenhouse gases-Carbon di oxide, methane and nitrous oxide
- 30. Risk assessment of polluted soil
- 31. Remediation/amelioration of contaminated soil
- 32. Remediation/amelioration of contaminated water
- 33. Remote sensing application in monitoring soil and water pollution
- 34. Remote sensing application for management of soi land water pollution

PRACTICAL SCHEDULE

- 1. Sampling of sewage waters, sewage sludge, solid /liquid industrial wastes
- 2. Sampling of polluted soils and plants and their processing
- 3. Estimation of dissolved and suspended solids
- 4. Estimation of chemical oxygen Dem and (COD)
- 5. Estimation of biological oxygen Dem and (BOD)
- 6. Measurement of coliform (MPN)
- 7. Estimation of nitrate nitrogen and ammoniacal nitrogen in effluents
- 8. Estimation of phosphorus in effluents
- 9. Estimation of heavy metal content in effluents
- 10. Estimation of heavy metals in contaminated soil sand plants
- 11. Management of contaminants in soil and plant for food safety
- 12. Air sampling
- 13. Determination of particulate matter
- 14. Determination of oxides of sulphur
- 15. Determination of NO_2 and O_2 concentration
- 16. Visittovariousindustrialsitestostudytheimpactofpollutantsonsoilandplants
- **17.** Final practical examination

LEARNING OUTCOME

Management of soil and water pollution

SUGGESTED READING

- 1. Lal,R,KimbleJ,LevineEandStewartB.A.1995.Soilmanagementandgreenhouseeffect,CRC Press
- 2. Middle brooks, E.J.1979. Industrial Pollution Control.Vol1. Agro-Industries. John Wiley Inter Science
- 3. Ross, S.M. 1994. Toxic Metals in Soil Plant Systems. John Wiley & Sons
- 4. Vesilund, P.A. and Pierce. 1983. Environmental Pollution and Control. Ann Arbor Science Publ. Shafi, S.M. 2005. Environmental Pollution. Atlantic Publishers
- 5. CalvetJ.C.2019.Soil Pollution. CBS publications
- 6. Jeffrey Peirce, J., P. Aarne Vesilind, and Ruth F. Weiner. 1997. Environmental Pollution and Control,4th ed. Elsevier Science & Technology Books

- 7. Ibrahim A. Mirsal. 2008. Soil Pollution -Origin, Monitoring & Remediation. Springer, Berlin, Heidelberg
- Chee Kong Yap. 2018. Soil Pollution: Sources, Management Strategies and Health Effects (Air,Water and Soil Pollution Science and Technology).Nova Science Publishers Inc
- 9. Jacey Murray.2019.Soil Pollution: Impacts and Solutions. Callis to Reference

SUGGESTED WEBSITES

- 1. https://www.elsevier.com/books/soil-pollution/duarte/978-0-12-849873-6
- 2. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118863831
- https://books.google.co.in/books/about/Water_Pollution.html?id=n1Gix9EjCzMC&re dir_esc=y
- 4. https://www.pdfdrive.com/air-pollution-books.html

SOIL 509 REMOTE SENSING AND GIS TECHNIQUE FOR SOIL, WATER AND 2+1 CROP STUDIES

AIM OF THE COURSE

To impart knowledge about the basic concepts of remote sensing, aerial photographs and imageries, and their interpretation; application of remote sensing in general and with special reference to soil, plants and yield forecasting; to impart knowledge about geo-statistical techniques with special reference to krigging, and GIS and applications in agriculture

THEORY

Unit I

Introduction and history of remote sensing; sources, propagation of radiations in atmosphere; interactions with matter, basic concepts and principles; hardware and software requirements.

Unit II

Sensor systems- camera, microwave radiometers and scanners; Passive and Active Sensors; fundamentals of aerial photographs and multi spectral imaging, hyperspectral imaging, thermal imaging; image processing and interpretations

Unit III

Introduction to GIS, components of GIS; data types-vector and raster. Spatial and non-spatial data. GNSS (GPS) segments, working principles and GPS errors; Various GNSS systems.

Unit IV

Significance and sources of the spatial and temporal variability in soils variability in relation to size of sampling; classical and geo-statistical techniques of evolution of soil variability.

Application of remote sensing and GIS techniques - Soil surveys and soil resource inventory, crop stress assessment, crop area estimation and yield forecasting.

Unit V

Application of remote sensing and GIS techniques - watershed management, drought assessment and land degradation mapping. Agricultural Research Information System (ARIS). Application of drones in agriculture

PRACTICAL

Familiarization with different remote sensing equipments and data products; Aerial photos and satellite data sources - Interpretation of Aerial photos and Satellite data - Digital image classification – Generation of base maps and attributes. Vector data analysis – Raster data analysis – change detection - GPS demonstration – Spatial variability mapping

LECTURE SCHEDULE

Unit I

- 1. Introduction to remote sensing history, need and applications
- 2. Principles, components and concepts of remote sensing
- 3. Electromagnetic energy –propagation theories, sources and spectrum
- 4. Energy interaction in the atmosphere absorption, transmission and scattering
- 5. Energy interaction with earth's surface vegetation, bare soil and water

Unit II

- 6. Sensor systems active and passive
- 7. Multispectral scanners and sensor resolutions- spectral, spatial and radiometric
- 8. Camera aerial camera and data characteristics
- 9. Aerial photography concepts and types
- $10. \ {\rm Data} \ {\rm products} \ {\rm and} \ {\rm study} \ {\rm of} \ {\rm stereo} \ {\rm pair}$
- 11. Elements of image interpretation visual and on screen
- 12. Platforms air borne and space borne
- 13. Satellites in orbit and its characteristics
- 14. Sensor scanning methods Along track and Across track

Unit III

- 15. GIS Fundamentals and Applications
- 16. Hardware and software requirements for GIS

17. Mid semester examination

- 18. Data Models
- 19. Spatial and Non Spatial Information
- 20. Spatial Data Analysis
- 21. GPS concepts, GPS errors and error correction

22. GPS survey techniques

Unit IV

- 23. Applications of remote sensing & GIS in soil survey and mapping
- 24. Applications of remote sensing & GIS in land degradation mapping
- 25. Application of remote sensing in land use and land cover mapping
- 26. Application of remote sensing in crop acreage estimation and stress detection
- 27. Application of remote sensing crop yield prediction and forecasting
- 28. Application of remote sensing & GIS techniques in wasteland identification and management

Unit V

- 29. Remote sensing & GIS techniques for prioritization of watershed.
- 30. Remote sensing techniques for drought monitoring
- 31. Soil variability studies spatial and temporal. Classical and Geostatistical techniques of evaluation of soil variability
- 32. Data collection for spatial variability mapping
- 33. Surface generation and identification of management units
- 34. Application of drones in agriculture

PRACTICAL SCHEDULE

- 1. Familiarization with different remote sensing equipments
- 2. Spectral reflectance measurements of different features using Ground Truth Radiometer
- 3. Aerial and Satellite data products
- 4. Interpretation of aerial photos
- 5. Digital image classification Supervised and Unsupervised
- 6. Base map preparation
- 7. Interpretation of false colour composite for physiography
- 8. Interpretation of false colour composite for land use and land cover
- 9. Geo-referencing a Toposheet
- 10. Generation of base maps and attributes (Digitization)
- 11. Database creation in GIS
- 12. Analysis in GIS query, buffer and overlay
- 13. Analysis in GIS Agro climatic Maps preparation
- 14. GPS demonstration and Geo-referencing the farms of TNAU
- 15. Spatial variability analysis and mapping
- 16. Drone demonstration Nutrient spraying and Mapping

LEARNING OUTCOME

Experience on the knowledge of remote sensing and their utility in research for solving field problem.

SUGGESTED READING

- 1. Brady NC and Weil RR. 2002. The Nature and Properties of Soils. 13th Ed. Pearson Edu.
- 2. Elangovan K. 2006. GIS Fundamentals, Applications and Implementations. New India Publ. Agency.
- 3. Lillesand TM and Kiefer RW. 1994. Remote Sensing and Image Interpretation. 3rd Ed. Wiley.
- 4. Nielsen DR and Wendroth O. 2003. Spatial and Temporal Statistics. Catena Verloggmbh.
- 5. Star J and Esles J. 1990. Geographic Information System: An Introduction. Prentice Hall
- 6. Thomas Lillesand, Ralph W. Kiefer, Jonathan Chipman. Remote Sensing and Image Interpretation 7th Edition, Wiley India Publishers.
- 7. A. M.Chandra and S.K.Ghosh. 2015. Remote Sensing and Geographic Information System 2 nd Edition, Narosa Publishing House New Delhi.

SUGGESTED WEBSITES

- 1. https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/earthsciences/pdf/resource/tuto r/fundam/pdf/fundamentals_e.pdf
- 2. http://geography.huji.ac.il/personal/Noam%20Levin/1999fundamentalsofremotesensing. pdf
- 3. http://water.umn.edu/Documents/Minnesota_Workshop-6.pdf
- 4. https://www.itc.nl/library/papers_2009/general/principlesgis.pdf.

SOIL 510 ANALYTICAL TECHNIQUES AND INSTRUMENTAL METHODS IN SOIL 0+2 AND PLANT ANALYSIS

AIM OF THE COURSE

To familiarize the students with commonly used instruments – their working, preparations of common analytical reagents for qualitative and quantitative analysis of both soil as well as plant samples.

PRACTICAL

Unit I

Principles of analytical chemistry: preparation of solutions for standard curves, indicators and standard solutions for acid base, oxidation reduction and complexometric titration; soil, water and plant sampling techniques, their processing and handling.

Unit II

Determination of nutrient potentials and potential buffering capacities of soils for phosphorus and potassium; estimation of phosphorus, ammonium and potassium fixation capacities of soils.

Unit III

Principles of visible, ultraviolet and infrared spectrophotometry, atomic absorption, flame-photometry, inductively coupled plasma spectrometry, chromatographic techniques, mass spectrometry and x-ray diffractometry; identification of minerals by x ray and by different methods, CHNS analyzer.

Unit IV

Electro chemical titration of clays; estimation of exchangeable cations (Na, Ca, Mg, K); estimation of root cation exchange capacity; measurement of redox potential.

Unit V

Nutrients analysis techniques in soil and plants: wet digestion/ fusion/ extraction of soil with aqua regia with soil for elemental analysis; triacid/ di-acid digestion of plant samples; determination of available and total nutrients (N, P, K, S, Ca, Mg, Zn, Cu, Fe, Mn, B, Mo) in soils; determination of total nutrients (N, P, K, S, Ca, Mg, Zn, Cu, Fe, Mn, B, Mo) in plants.

PRACTICAL

- 1. Preparation of solutions for standard curves
- 2. Indicators and standard solutions for acid base titrations.
- 3. Indicators and standard solutions for Oxidation reduction titration.
- 4. Indicators and standard solutions for complex metric titration.
- 5. Soil, Water and plant sampling techniques, their processing and handling.
- 6. Determination of nutrient potentials and potential buffering capacities of soils for phosphorus
- 7. Determination of nutrient potentials and potential buffering capacities of soils for potassium
- 8. Estimation of ammonium fixation capacities of soils
- 9. Estimation of phosphorus fixation capacities of soils
- 10. Estimation of potassium fixation capacities of soils
- 11. Principle of spectrometry and its application for available P estimation
- 12. Turbidimetry for sulphate estimation
- 13. Principle of Flame photometry and its application for Na and K
- 14. Principle of Atomic absorption spectrometry and its application for micronutrients estimation
- 15. Instrumentation on ICP-AES
- 16. Chromatographic techniques and determination of chemical compounds from soil / plant samples
- 17. Mid semester examination
- 18. Estimation of ¹⁵N by mass spectrometry
- 19. Identification of minerals by X-ray diffraction and other methods.
- 20. Estimation of total N in soils by CHNS analyser

- 21. Electro chemical titration of clays- Potentiometric titrations
- 22. Estimation of exchangeable cations (Na, Ca, Mg, K).
- 23. Estimation of root cation exchange capacity
- 24. Digestion techniques for elemental analysis in soil and plant samples
- 25. Wet digestion of soil for organic carbon estimation
- 26. Determination of available/ total nutrients (N, P, K,) in soils
- 27. Determination of available/ total nutrients (S, Ca, Mg) in soils
- 28. Determination of available/ total nutrients (Zn, Cu, Fe, Mn, B, Mo) in soils
- 29. Digestion of plant samples using di/tri acids for nutrient estimation.
- 30. Determination of total nutrients (N, P, K) in plants
- 31. Determination of total nutrients (S, Ca, Mg) in plants
- 32. Determination of total nutrients (Zn, Cu, Fe, Mn, B, Mo) in plants
- 33. Measurement of redox potential in soils
- 34. Final Practical examination

LEARNING OUTCOME

Development of confidence for setting soil testing laboratory.

- 1. Hesse P. 971. Textbook of Soil Chemical Analysis. William Clowes & Sons.
- 2. Jackson ML. 1967. Soil Chemical Analysis. Prentice Hall of India.
- 3. Keith A Smith 1991. *Soil Analysis; Modern Instrumental Techniques*. Marcel Dekker.
- 4. Kenneth Helrich 1990. *Official Methods of Analysis*. Association of Official AnalyticalChemists.
- 5. Page AL, Miller RH and Keeney DR. 1982. *Methods of Soil Analysis*. Part II. SSSA, Madison.
- 6. Piper CE. Soil and Plant Analysis. Hans Publ.
- 7. Singh D, Chhonkar PK and Pandey RN. 1999. *Soil Plant Water Analysis A Methods Manual*. IARI, New Delhi.
- 8. Tan KH. 2003. Soil Sampling, Preparation and Analysis. CRC Press/Taylor & Francis.
- 9. Tandon HLS. 1993. *Methods of Analysis of Soils, Fertilizers and Waters*. FDCO, New Delhi.
- 10. Vogel AL. 1979. A Textbook of Quantitative Inorganic Analysis. ELBS Longman

SOIL 511 MANAGEMENT OF PROBLEMATIC SOILS AND WATER

AIM OF THE COURSE

To educate students about basic concepts of problem soils and brackish water, and their management. Attention will be on management of problem soils and safe use of brackish water in relation to crop production.

THEORY

Unit I

Area and distribution of problem soils–acidic, saline, sodic and physically degraded soils; origin and basic concept of problematic soils, factors responsible.

Unit II

Morphological features of saline, sodic and saline-sodic soils; characterization of salt affected soils-soluble salts, ESP, pH; physical, chemical and microbiological properties. Effects of salinity on plant growth.

Unit III

Management of salt-affected soils; Amendments/water/nutrient management; salt tolerance of crops mechanism and ratings; salt stress meaning and its effect on crop growth, monitoring of soil salinity in the field; management principles for sandy, clayey, red lateritic and dry land soils.

Unit IV

Acid soils-nature of soil acidity, sources of soil acidity; effect on plant growth, lime requirement of acid soils; management of acid soils; Acid sulphate soils definition, causes for formation of acid sulphate soil and its management. Biological sickness of soils and its management Quality of irrigation water; Toxicity of specific ions.

Unit V

Salt balance under irrigation, management of brackish water for irrigation; characterization of brackish waters, area and extent; relationship in water use and quality. Management and effective use of poor-quality irrigation water and cropping pattern for utilizing poor quality ground waters. Agronomic practices in relation to problematic soils;

PRACTICAL

Characterization of acid, acid sulfate, salt-affected and calcareous soils. Determination of cations (Na⁺, K⁺, Ca²⁺ and Mg²⁺) in ground water and soil samples. Determination of anions (Cl⁻, SO₄²⁻, CO₃²⁻ and HCO₃⁻) in ground waters and soil samples; Interpretation of water quality data and management; Lime and gypsum requirements of acid and sodic soils.

2+1

LECTURE SCHEDULE

Unit I

- 1. Problem soils Definition classification Area and distribution of physically degraded soils, Saline soils, Acid soils and Sodic soils
- 2. Origin basic concepts of problematic soils and factors responsible, their management and restoration: Excessively permeable soils, Slow permeable soils, Surface crusting
- 3. Origin basic concepts of problematic soils and factors responsible, their management and restoration: Surface hardpan, Shallow soils, Fluffy paddy soils
- 4. Soil physical constraints: Effects on plant growth
- 5. Causes, management and restoration of sand dunes
- 6. Causes, management and restoration of coastal and seasonally inundated soils

Unit II

- 7. Morphological features of saline, sodic and saline-sodic soils
- 8. Characterization of salt affected soils
- 9. Characterization of salt affected soils in respect of soluble salts
- 10. Characterization of salt affected soils in respect of ESP and pH
- 11. Physical properties of salt affected soils
- 12. Chemical properties of salt affected soils
- 13. Microbiological properties of salt affected soils

Unit III

- 14. Management of salt-affected soils /Amendments/ water/nutrient management
- 15. Salt tolerance of crops -mechanism and ratings
- 16. Salt stress meaning and its effect on crop growth
- 17. Mid semester examination
- 18. Monitoring of soil salinity in the field
- 19. Management principles for sandy and clayey soils
- 20. Management principles for red lateritic soils
- 21. Management principles for dry land soils

Unit IV

- 22. Acid soils-nature of soil acidity, sources of soil acidity
- 23. Effect of acidity on plant growth, lime requirement of acid soils
- 24. Management of acid soils
- 25. Acid sulphate soils definition, causes for formation of acid sulphate soil and its management
- 26. Biological sickness of soils and its management
- 27. Quality of irrigation water and Toxicity of specific ions
- 28. Classification and parameters of irrigation water.

Unit V

- 29. Salt balance under irrigation
- 30. Characterization of brackish waters
- 31. Area and extent of brackish water.

- 32. Management of brackish water for irrigation
- 33. Management and effective use of poor-quality irrigation water, cropping pattern for utilizing poor quality ground waters
- 34. Agronomic practices in relation to problematic soils

PRACTICAL SCHEDULE

- 1. Collection of soil samples
- 2. Estimation of pH, EC and CEC of acid soil.
- 3. Estimation of pH, EC and CEC of acid sulphate soils
- 4. Estimation of pH, EC and CEC of Calcareous soils
- 5. Estimation of pH, EC and ESP of salt affected soils.
- 6. Estimation of exchangeable cations in soil.
- 7. Determination of cations (Na^{+,} K⁺, Ca²⁺ and Mg²⁺) in salt affected soil
- 8. Determination of anions (Cl^- , SO_4^{2-} , CO_3^{2-} and HCO_3^{-}) in salt affected soil
- 9. Collection of water samples.
- 10. Determination of cations (Na⁺, K^+ , Ca²⁺ and Mg²⁺) in ground water
- 11. Determination of anions (Cl⁻, SO_4^{2-} , CO_3^{2-} and HCO_3^{-}) in ground waters
- 12. Preparation of saturation paste extract and Estimation of cations and anions in saturation paste extract
- 13. Computation of salts in irrigation water
- 14. Determination of water quality, interpretation and management
- 15. Lime requirement
- 16. Gypsum requirement
- 17. Final practical examination

SUGGESTED READING

- 1. Bear, FE. 1964. Chemistry of the Soil. Oxford & IBH.
- Jurinak, JJ.1978. Salt affected Soils. Department of Soil Science and Biometerology. Utah State Univ.
- USDA Handbook No.60. 1954. Diagnosis and Improvement of Saline and Alkali Soils. Oxford & IBH.
- 4. Srivastava, V.C. 2011. Management of Problem Soils: Principles and Practices, AGROBIOS (India).

LEARNING OUTCOME

Experience on solving field problem of problem soil and waters.

SUGGESTED WEBSITES

- 1. <u>http://agritech.tnau.ac.in/pdf/3.pdf</u>
- 2. http://www.ldd.go.th/ldd_en/en-US/problem-soils/
- 3. http://www.cssri.org/index.php?option=com_content&view=article&id=122

SOIL 512 LAND DEGRADATION AND RESTORATION

1+0

AIM OF THE COURSE

To impart knowledge related to various factors and processes of land degradation and their restoration techniques.

THEORY

Unit I

Land Degradation Type, factors and processes of land degradation and its impact on soil productivity, including soil fauna, biodegradation and environment.

Land restoration and conservation techniques-erosion control.

Unit II

Land restoration and conservation techniques- reclamation of salt affected soils; mine land reclamation, afforestation, organic products.

Unit III

Diagnosis and Mapping of Land Degradation Extent, diagnosis and mapping of land degradation by conventional and modern RS GIS tools; monitoring land degradation by fast assessment, modern tools. Land degradation in the context of climate change

Unit IV

Impacts of Land Degradation with Reference to Climate Change. Direct and indirect impacts on land degradation.

Unit V

Land use Policies and Incentives Land use policy, incentives and participatory approach for reversing land degradation; global issues for twenty first century.

LECTURE SCHEDULE

Unit I

- 1. Land degradation: Definition, Types, factors and processes of land deterioration.
- 2. Land deterioration impact on soil productivity, including soil fauna, bio -deterioration and environment.
- 3. Land restoration and soil conservation techniques.
- 4. Causes, management of soil erosion.

Unit II

- 5. Causes, reclamation and management of salt affected soils.
- 6. Causes, reclamation and management of mined and ravine lands
- 7. Afforestation and sylviculture methods; Soil carbon restoration use of industrial Crich by products/organic products
- 8. Mid semester examination

Unit III

- 9. Extent, diagnosis and mapping of land deterioration by conventional and modern RS-GIS tools
- 10. Monitoring land deterioration by fast assessment and modern tools.
- 10. Land degradation in the context of climate change

Unit IV

- 11. Climate induced vegetation changes implications for land degradation
- 12. Potential contributions of land-based carbon dioxide removal (CDR) to reducing and reversing land degradation
- 13. Direct and indirect impacts on land degradation
- 14. Relationships between land degradation, climate change and poverty

Unit V

- 15. Land use policy, incentives and participatory approach for reversing land deterioration
- 16. Global issues for twenty first century.

SUGGESTED READING

- 1. Biswas TD and Narayanasamy G. (Eds.). 1996. Soil Management in Relation to Land Degradation and Environment. Bull. Indian Soc. Soil Sci. 17, New Delhi.
- 2. Doran JW and Jones AJ. 1996. Methods of Assessing Soil Quality. Soil Science Society of America, Madison.
- 3. Greenland DJ and Szabolcs I. 1994. Soil Resilience and Sustainable Land Use. CABI.
- 4. Lal R, Blum WEH, Vailentine C and Stewart BA. 1997. Methods for Assessment of Soil Degradation.
- 5. Sehgal J & Abrol IP. 1994. Soil Degradation in India Status and Impact. Oxford & IBH

LEARNING OUTCOME

Experience on restoration of degraded soil for optimization of crop yield.

SUGGESTED WEBSITES

- 1. http://www.fao.org/docrep/v4360e/V4360E03.htm
- 2. https://www.researchgate.net/publication/263487317
- 3. http://www.fao.org/docrep/T0115E/T0115E08.htm
- 4. https://www.conserve-energy-future.com/causes-effects-solutions-soil-egradation. php
- 5. http://www.yourarticlelibrary.com/land-pollution/land-degradation-9-main-causes-of-landdegradation/39654
- 6. https://www.sciencedirect.com/topics/agricultural-and-biologicalsciences/landdegradation
- 7. https://pdfs.semanticscholar.org/3629/53f0a18b61799a9526aa4f006ce2424982b2.pdf.

SOIL 513 SOIL SURVEY AND LAND USE PLANNING

2+0

AIM OF THE COURSE

To teach the better utilization of land for agricultural purposes, and better management of run-off or surplus/ excessive rain-water in the catchment area for agricultural purposes in a watershed.

THEORY

Unit -I

Soil survey and its types; soil survey techniques- conventional and modern.

Unit II

Soil series –characterization and procedure for establishing soil series; bench mark soil sand soil correlations; soil survey interpretation. Thematic soil maps, cartography, mapping units. Application of remote sensing and GIS in agriculture

Unit III

Techniques for generation of soil maps. Application of remote sensing and GIS in soil survey and mapping of major soil groups of India. Land form—soil relationship; major soil groups of India with special reference to respective states.

Unit IV

Land capability classification and land irrigability classification; land evaluation and land use type (LUT)–concept and application; approaches for managing soils and landscapes in the frame work of agro-ecosystem.

Concept and techniques of land use planning; factors governing present land use; Status of LUP in India.

Unit V

Land evaluation methods and soil-site suitability evaluation for different crops; land capability classification and constraints in application. Agro-ecological regions/sub-regionsofIndiaandtheircharacteristics in relation to cropproduction.

LECTURE SCHEDULE

Unit I

- 1. Soil classification-concepts and principles
- 2. Types of soil classification-conventional and modern methods
- 3. Soil survey-definition and Early system of techniques
- 4. Concept of standard soil survey, its scope and objectives
- 5. Examination and description of soil profile
- 6. Characteristics of soil survey
- 7. Methods of soil survey
- 8. Types of soil survey-detailed surveys, reconnaissance surveys and detailedreconnaissance surveys.

Unit II

- 9. Soil series- characterization and procedure for establishing soil series
- 10. Soil survey report preparation
- 11. Bench mark soils and soil correlations; soil survey interpretation
- 12. Cartography
- 13. Cartography and mapping units
- 14. Thematic soil map preparation.
- 15. Principles of Geographic information system
- 16. Application of remote sensing and GIS.

17. Mid-semester examination

Unit III

- 18. Geographic information system and its application in agriculture.
- 19. Techniques for generation of soil maps
- 20. Application of remotes ensing and GIS insoils urvey and mapping of majorsoil groups of India
- 21. Landform-soil relationship
- 22. Soil sof India
- 23. Soil sof Tamil Nadu

Unit IV

- $\label{eq:24.24} {\tt Landcapability classification and salient features and constraints of {\tt LCC} {\tt$
- $\label{eq:25.} Land irrigability classification and salient features and constraints of LIC$
- 26. Land evaluation and land use type (LUT)- concept and application
- 27. Approaches for managing soils and landscapes in the frame work of agro ecosystem.
- 28. StatusofLUPinIndiaandApplicationofgeoinformationinsoilresourcestudies
- 29. Concept and techniques of land use planning; factors governing present and use

Unit V

- 30. Soil Fertility capability classification (FCC)
- 31. Soil quality, Storie' sindex, Soil productivity index
- 32. Landevaluationmethodsandsoil-sitesuitabilityevaluationfordifferentcrops
- 33. Agro-ecological regions/sub-regionsofIndia and their characteristic sin relation to crop production.
- 34. Visit to National Bureau of Soil Survey (NBSS&LUP) and Land Use Planning unit.

LEARNING OUTCOME

Planning for land use in proper way for higher crop productivity.

- Boul SW, Hole ED, Mac Craken RJ & Southard RJ. 1997. Soil Genesis and Classification. 4th Ed. Panima Publ.
- 2. Brewer R. 1976. Fabric and Mineral Analysis of Soils. John Wiley & Sons.
- Thiyageshwari, S., M.V. Sriramachandrasekharan and D. Selvi. 2015. Fundamentals of Soil Inventory, Problem soils and Irrigation water. Jaya Publishing House, Delhi. ISBN: 978-93- 84337-43-8. Pp. 221.

SUGGESTED WEBSITES

- 1. https://www.india.gov.in/website-soil-and-land-use-survey-india
- 2. https://nbsslup.in/-NBSS and LUP
- 3. https://slusi.dacnet.nic.in/aboutslusi.html Soil and Land use survey of India

SOIL 514 INTRODUCTION TO NANOTECHNOLOGY 2+1

AIM OF THE COURSE

To impart basic knowledge about nanoscience, properties of nanoparticles and their applications in biology.

THEORY

Unit I

General introduction: Basics of quantum mechanics, harmonic oscillator, magnetic phenomena, band structure in solids.

Unit II

Moss bauer Effect and spectros copy, optical phenomena, bond in solids, an isotropy.

Nanostructures: growth of compound semiconductors, super lattices, self-assembled quantum dots, nano-particles.

Unit III

Nano-tubes and nano-wires, fullerenes (buckballs, graphene). Nano-fabrication and nano-patterning.

Optical, X-ray, and electron beam lithography, self-assembled organic layers, process of synthesis of nano powders, electrode position, and important nano materials

Unit IV

Mechanical properties, magnetic properties, electrical properties, electronic conduction with nanoparticles, investigating and manipulating materials in thenanoscale: Electron microscopy. Nano-biology: Interaction between biomolecules and nano-particle surface, different types of inorganic materials used for the synthesis of hybrid nano-bio assemblies. Nano-sensors

Unit V

Smart delivery of nutrients. application of nano technology-inagriculture, current status of nano-biotechnology, toxicity and adaptation of NP' sinthe soil and aquatic life and safe handling of nanoparticles, future perspectives of nano-biology.

PRACTICAL

- Sources of nanoparticles and its preparation by different approaches
- Electro spinning and its use in agriculture and allied sector.
- Equipments used in Nanotechnology: its principle and uses.
- Acquaintances with different equipments used in nanotechnology.
- Synthesis and characterization of Ag and ZnO nanoparticles.
- Mode of action of ZnO nanoparticles against soil borne diseases.
- Study on efficacy of ZnO nanoparticles as seed treating agent on plant growth parameters.

LECTURE SCHEDULE:

Unit I

- 1. General introduction on Nanotechnology
- 2. Concept and Basics of nano-Science and nanotechnology
- 3. Basics of quantum mechanics, from the traditional world to the quantum world
- 4. Two fundamental concepts
- 5. Harmonic oscillator
- 6. Magnetic phenomena,
- 7. The electron Molecules
- 8. Band structure in solids

Unit II

- 9. Mossbauer effect and spectroscopy
- 10. Optical phenomena
- 11. Bond in solids, anisotropy
- 12. Properties of Nanoparticles, Nanostructures
- 13. Growth of compound semiconductors,
- 14. Superlattices, self-assembled quantum dots,
- 15. Nanoparticles

Unit III

16. Nanotubes

17. Midsemester examination

- 18. Nanowires, fullerenes (bucky balls, graphene).
- 19. Nano fabrication and nano-patterning
- 20. Optical, X-ray, and electron beam lithography
- 21. Self-assembled organic layers
- 22. Process of synthesis of nano powders, electrodeposition, and important nanomaterials

Unit IV

- 23. Mechanical properties and Magnetic properties
- 24. Electrical properties, electronic conduction with nano particles
- 25. Investigating and manipulating materials in the Nanoscale: Electron microscopy

- 26. Nano biology, interaction between biomolecules and nanoparticle surface
- 27. Different types of inorganic materials used for synthesis of hybrid nano- bio assemblies.
- 28. Nano-sensors

Unit V

- 29. Smart Delivery of Nutrients
- 30. Applications of Nanotechnology in Agriculture
- 31. Current status of nanobiotechnology
- 32. Toxicity and Adaptation of NP' sin the Soil and Aquatic Life
- 33. Safe Handling of nano particles
- 34. Future perspectives of nano-biology

PRACTICAL SCHEDULE

- 1. Sources of nanoparticles and its preparation by different approaches
- 2. Electro spinning and its use in agriculture and allied sector.
- 3. Equipments used in Nanotechnology: its principle and uses
- 4. Acquaintances with different equipments used in nanotechnology.
- 5. Particle Size Analyzer (PSA)
- 6. Ultraviolet and Visible (UV-VIS) Absorption Spectroscopy
- 7. Transmission Electron Microscopy (TEM)
- 8. Scanning Electron Microscopy (SEM)
- 9. Atomic Force Microscopy (AFM)
- 10. Fourier Trans form Infrared (FTIR)Spectroscopy
- 11. X-Ray Diffraction (XRD)
- 12. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method
- 13. Quartz Crystal Microgravimetry (QCM)Method
- 14. Synthes is and characterization of Ag and ZnO nano particles.
- 15. ModeofactionofZnOnanoparticlesagainstsoilbornediseasesandstudyonefficacyofZnOn ano particles as seed treatment.
- 16. Synthesis of Nanoparticles by biological method.
- 17. Final practical examination

LEARNING OUTCOME

Experience on the knowledge of nano science and their utility in research for solving field problem.

- 1. Balandin AA and Wang KL. 2006. Handbook of semiconductor nano structures and nano devices. California: American Scientific Publishers.
- 2. Bharat Bhushan, Handbook of Nanotechnology, Springer, 2005
- 3. ChallaKumarS.S.R.2006.Nano technologies for the life sciences. : Weinheim: Wiley-VCH GmbH.

- 4. Gregory L.TimpG. 1999. Nanotechnology. NewYork: Springer Verlag.
- 5. GuozhongCao.Ed2011.NanostructuresandNanomaterials: Synthesis, Properties, and Applications, World Scientific Series in Nano science and Nano technology,
- 6. Kohler M and Frintzsche W. 2007. Nanotechnology: Introduction to nano structuring techniques W Weinheim: Wiley-VCH Verlag GmbH.
- 7. Kosal ME. 2009. Nanotechnology for chemical and biological defense. Dordrecht: Stringer
- 8. Ozin, G.A. and A.C. Arsenault, Nano chemistry: A chemical approach to nano materials. RoyalSocietyofChemistry,2009
- 9. Vinod Kumar Khanna, 2012 Nano sensors: Physical, Chemical, and Biological, CRC.
- 10. Tarafdar, J.C. and Raliya R. 2011. The Nanotechnology. Scientific Publisher (India). pp. 215.
- 11. Timp G. 1999. Nanotechnology. New York: Springer Verlag.

SUGGESTED WEBSITES

- https://www.nanowerk.com/nanotechnology/ introduction_to_nanotechnology_1.php
- 2. https://www.pdfdrive.com/nanotechnology-books.html
- 3. https://www.pdfdrive.com/novel-approaches-of-nanotechnology-in-foodnanotechnology-in-the-agri-food-industry-volume-1-e158051223.html
- 4. https://www.routledge.com/Nanotechnology-Applications-in-Agricultural-andbioprocess-Engineering/Goyal-Mishra-Dasarahalli-uligowda/p/book/9781774637500
- 5. https://www.elsevier.com/books/handbook-of-nanotechnologyapplications/faungnawakij /978-0-12-821506-7

MINOR COURSE

BIOCHEM 501 PLANT BIOCHEMISTRY 2+1

AIM OF THE COURSE

To provide an understanding of metabolic processes in plants and the role of different biosynthetic pathways in plant growth and development.

THEORY

Unit I

Photosynthetic machinery: Structure and function of plant cell and its organelles, Phytochromes, chloroplast morphology & structure, Structure and chemistry of photosynthetic pigments, Light reaction of photosynthesis. Carbon reduction inC₃, C₄ and CAM plants.

Unit II

Photorespiration, Sucrose-starch interconversion. Synthesis of major biomolecules: Biosynthesis of structural and storage carbohydrates, storage proteins and lipids. Basic concepts of nitrogen and sulphur metabolism: Biological nitrogen fixation, Nitrate assimilation in plants.

Unit III

Sulphur chemistry and function, reductive sulphate assimilation pathway, sulphated compounds. Germination and fruit ripening; Biochemistry of seed germination – stages, requirements, metabolism and mobilization of storage material; Biochemistry of fruit ripening – ripening process, cell wall degrading enzymes, role of ethylene and regulation of ethylene production. Phytohormones: Different classes of phytohormones, their biosynthesis and mode of action

Unit IV

Biochemistry of plant secondary metabolites: Biochemistry, significance and biosynthesis of plant secondary metabolites - phenolics, terpenoids, alkaloids, cyanogenic glycosides and glucose inolates.

Unit V

Stress Biochemistry: Effect of biotic and abiotic factors on plant metabolism and plant defense system. Abiotic stresses, ROS. Enzymic and non- enzymic antioxidants. Biosynthesis & mechanism of action of osmoprotectants - glycine-betaine, proline; polyamines; heat shock proteins. Signal transduction. Plant defense system: PR proteins, phytoalexins, cinnamic acid, salicylates, jasmonic acid, toxic amino acids - mode of action.

PRACTICALS

Fractionation of cell organelles, Estimation of amylose, Individual amino acid-Methionine, Proline, Salicylic acid, Extraction and estimation of Anthocyanin- Extraction and estimation of alkaloids, Determination of poly phenols/phenolics, Tannins, Total antioxidant activity. Enzyme extraction methods - Assay of starch synthase, PAL, SOD, LOX.

LECTURE SCHEDULE

Unit I

- 1. Structure and function of plant cell and its organelles
- 2. Phytochromes, chloroplast morphology & structure
- 3. Structure and chemistry of photosynthetic pigments
- 4. Light reaction of photosynthesis
- 5. Carbon reduction in C3 plants
- 6. Carbon reduction in C4 plants
- 7. Carbon reduction in CAM plants

Unit II

- 8. Photorespiration.
- 9. Sucrose-starch interconversion.
- 10. Biosynthesis of structural carbohydrates
- 11. Biosynthesis of storage carbohydrates.
- 12. Biosynthesis of Storage proteins.
- 13. Biosynthesis of Lipids.
- 14. Biological nitrogen fixation
- 15. Nitrate assimilation in plants

Unit III

16. Sulphur chemistry and function, reductive sulphate assimilation pathway, sulphated Compounds

17. Mid semester examination

- 18. Biochemistry of seed germination stages, requirements, metabolism and mobilization of storage material;
- 19. Biochemistry of fruit ripening ripening process, cell wall degrading enzymes, role of ethylene and regulation of ethylene production.
- 20. Different classes of phytohormones, their biosynthesis and mode of action.
- 21. Structure & functions of auxin & gibberellins
- 22. Structure & functions of ethylene, cytokinins, abscissic acid
- 23. Structure & functions of brassinosteroids

Unit IV

- 24. Biochemistry and significance of secondary metabolites, Shikimate pathway
- 25. Cyanogenic glycosides and glucosinalates
- 26. Biosynthesis of phenolic compounds
- 27. Acetate-mevalonate pathway and biosynthesis of terpenes
- 28. Occurrence and classification of alkaloids
- 29. Biosynthesis of alkaloids and their pharmaceutical importance.

Unit V

- 30. Stress biochemistry –Effect of biotic and abiotic factors on plant metabolism and plant defense system
- 31. Abiotic stresses-biochemistry of water and salt stress
- 32. ROS, Enzymic and non-enzymic antioxidants-Osmoprotectants glycine-betaine, proline, Polyamines; Heat shock proteins Biosynthesis and mechanism of action
- 33. Signal transduction. Plant defense system-organization and elucidation
- 34. PR proteins, phytoalexins, cinnamic acid, salicylates, jasmonic acid, toxic aminoacids mode of action.

PRACTICAL SCHEDULE

- 1. Fractionation of cell organelles
- 2. Estimation of Amylose
- 3. Assay of starch synthase
- 4. Estimation of individual amino acids-Methionine
- 5. Fractionation of storage proteins
- 6. Assay of Phenyl Alanine Ammonia Lyase (PAL)
- 7. Assay of Superoxide Dismutase (SOD)
- 8. Assay of Lipoxygenase (LOX)
- 9. Extraction and estimation of Anthocyanin
- 10. Qualitative tests of secondary metabolites (alkaloids, sterols etc.)
- 11. Extraction and estimation of alkaloids
- 12. Determination of polyphenols/phenolics
- 13. Determination of tannins
- 14. Estimation of proline
- 15. Estimation of salicylic acid
- 16. Determination of total antioxidant activity
- 17. Final practical examination

- 1. Buchanan BB, Gruissem W & Jones RL. 2000. Biochemistry and Molecular Biology of Plants.2nd Ed.Wiley Blackwell
- 2. Heldt, H-W. 2010. Plant Biochemistry and Molecular Biology. 4thEdition. Oxford university press
- 3. Goodwin TW & E.I.Mercer.2005. Introduction to Plant Biochemistry. 2ndEdition.CBS
- 4. Heldt, H-W. and Piechulla, B. 2010 Plant Biochemistry. 4th Edition. Elsevier
- 5. Harinda, Makkea and Klaus, 2007. Plant Secondary Metabolites. Springer
- 6. L.J.Cseke, A. Kirakosyan, P.B.Kaufman, S. Warber, J.A.Duke, H.L.Breilmann.2006. Natural products from plants 2nd Ed. CRC press.