PONDICHERRY UNIVERSITY
PUDUCHERRY 605 014.

M.Sc. Microbiology

CURRICULUM AND SYLLABUS
2013 ONWARDS

Microbiology Programme
SCHOOL OF LIFE SCIENCES
PONDICHERRY UNIVERSITY
CURRICULUM AND SYLLABI FOR M.Sc., MICROBIOLOGY - COURSE STRUCTURE (2013 onwards)

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE NAME</th>
<th>COURSE CODE</th>
<th>TYPE OF COURSE</th>
<th>NUMBER OF CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I Semester - Theory Courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>General Microbiology</td>
<td>MB 401</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Cell and Molecular Biology</td>
<td>MB 402</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Microbial Biochemistry</td>
<td>MB 403</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Immunology</td>
<td>MB 404</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Microbial Genetics</td>
<td>MB 405</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Biomolecules</td>
<td>MB 422</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Microbial Physiology</td>
<td>MB 423</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Microbial Technology</td>
<td>MB 424</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>I Semester - Lab Courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>General Microbiology Lab</td>
<td>MB 441</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Cell and Molecular Biology Lab</td>
<td>MB 442</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Microbial Biochemistry Lab</td>
<td>MB 443</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Immunology Lab</td>
<td>MB 444</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>II Semester - Theory Courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bacteriology</td>
<td>MB 451</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Mycology</td>
<td>MB 452</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Virology</td>
<td>MB 453</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>rDNA Technology</td>
<td>MB 454</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Techniques in Microbiology</td>
<td>MB 455</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Marine Microbiology</td>
<td>MB 471</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Microbial Nanotechnology</td>
<td>MB 472</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Agricultural Microbiology</td>
<td>MB 473</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Mycotoxicology and Plant Pathology</td>
<td>MB 474</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II Semester - Lab Courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bacteriology Lab</td>
<td>MB 491</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Mycology Lab</td>
<td>MB 492</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Virology Lab</td>
<td>MB 493</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Techniques in Molecular Cloning Lab</td>
<td>MB 494</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Instrumentation Techniques Lab</td>
<td>MB 495</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>III Semester - Theory Courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Medical Microbiology</td>
<td>MB 501</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Food Microbiology</td>
<td>MB 502</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Applied & Industrial Microbiology</td>
<td>MB 503</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Environmental Microbiology</td>
<td>MB 504</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Microbial genomics</td>
<td>MB 505</td>
<td>HC</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Fermentation Technology</td>
<td>MB 521</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Genome Technology</td>
<td>MB 522</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Cynobacteriology</td>
<td>MB 523</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Drug Design and Discovery</td>
<td>MB 524</td>
<td>SC</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III Semester - Lab Courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Medical Microbiology Lab</td>
<td>MB 541</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Food Microbiology Lab</td>
<td>MB 542</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Applied & Industrial Microbiology</td>
<td>MB 543</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Environmental Microbiology</td>
<td>MB 544</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Microbial genomics Lab</td>
<td>MB 545</td>
<td>HC</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IV Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Project/ Dissertation</td>
<td>MB 599</td>
<td>HC</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Number of credits: 98 credits
GENERAL MICROBIOLOGY

Course Code: MB 401
Total Number of Lecture hours: 48
Total Number of Credits: 03

This course aims to introduce the history and development of Microbiology. The contents of this course will help students understand history, biology of microorganisms, growth and control of microbes. A unit is exclusively focused on archaea which is one of the domains of Carl Woese’s classification. Thus the beginners are rightly exposed to foundation of Microbiology which would lead them towards progressive advancement of the subject.

Unit 1

Unit 2

Unit-3

Unit-4

Extremophiles: Diversity of microorganisms of arctic, Antarctic and hydrothermal vents – Archaeal biology - Acidophile , Alkaliphile, Anaerobe, Cryptoendolith, Halophile, Hyperthermophile, Hypolith, Lithoautotroph, Metal-tolerantmicrobes, Oligotroph,
Osmophile, Piezophile, Polyextremophile, Psychrophile/Cryophile, Radioresistant, Thermophile, Thermoacidophile, Xerophile – mechanism of extremophiles.

Unit 5

10 h

Cultivation and control of microbes: Types of growth media (natural, synthetic, complex, enriched, selective- definition with example), pure culture methods (streak plate, spread plate, pour plate, stab culture, slant culture). Anaerobic (thioglycolate, anaerobic chamber, Robertson’s media, microaerophilic), liquid shake culture of aerobic bacteria Control of microbes- Sterilisation, disinfection, antiseptic, tyndallisation, pasteurization: Physical- dry heat, moist heat, UV light, ionizing radiation, filtration, HEPA filter, Chemical methods.

Recommended Text Books:

1. Bernard D. Davis. Renato Dulbecco. Herman N. Eisen.and Harold, S.

Suggested Reading:

CELL AND MOLECULAR BIOLOGY

Course Code: MB 402
Total Number of Lecture hours: 48
Total Number of Credits: 03

This course aims to introduce the fundamentals and basic biology of life. The contents of this course will help students understand the features of prokaryotic and eukaryotic cell and the difference between them. It will elaborate the central dogma of the cell i.e., gene expression viz. transcription and translation in both prokaryotes and eukaryotes.

Unit 1 10 h

Unit 2 8 h

Structural Biology and Signalling: Biosynthesis of macromolecules (proteins, polysaccharides, nucleic acids) - Biomembranes and subcellular organization of prokaryotic and eukaryotic cells - cell architecture - Cell signaling – types, Chemical signals and cellular receptors, G Protein-linked receptors, Protein Kinase-associated receptors, Growth factors as messengers, Cell signals and Apoptosis, Cytoskeleton: microfilaments-intermediate filaments-microtubules.

Unit 3 10 h

Unit 4 10 h

Unit 5 10 h

Genetic code: Characteristics, deciphering the code. Protein biosynthesis: Prokaryotic and eukaryotic translation, the translational machinery, mechanism of initiation, elongation and termination. Regulation of expression in eukaryotes: Britten-Davidson model. DNA
binding and activation domains of transcription factors. Packaging of chromosomes and its relation to transcription regulation. Regulation of translation by 3’ and 5’ UTR motifs.

Recommended Text Books:

Suggested Reading:

It is an interdisciplinary course designed to introduce the essential fundamentals of biochemistry. This course focuses on the concepts of biochemistry and important microbial macromolecules and their metabolism. On completion of the course a student will be well versed with the knowledge of bioenergetics, energy calculations at physiological conditions and central metabolic pathways in bacteria and eukaryotes.

Unit- 1

Chemistry of Life and Special Microbial Molecules: Bonds: ionic bonding, Ion-dipole, covalent, H-bonds, Van der Wall’s interaction, Hydrophobic and hydrophilic interactions Water as a biological solvent and its role in biological processes pH, Henderson-Hasselbalch equation, concept of buffer, strength of buffer, range of buffer, important biological buffers. Structure of Special Microbial Molecules: Peptidoglycan, bacteriorhodopsin, biphytanyl chains and lipids in archaeal cell membranes and their significance in adaptation in extreme conditions.

Unit- 2

Bioenergetics: Laws of thermodynamics, entropy, enthalpy, free energy, free energy and equilibrium constant, Gibbs free energy equation, determination of free energy of hydrolytic and biological oxidation reduction reactions, under standard and non-standard conditions, high energy compounds, coupled reactions, determination of feasibility of reactions. ATP and other different groups of high energy phosphate compounds.

Unit- 3

Unit- 4

Macromolecules II- Carbohydrates and Lipids: Carbohydrates: Monosaccharides, disaccharides, oligosaccharides and polysaccharides, concepts of epimer, isomer Lipids: Saturated and unsaturated fatty acids, Fatty acid oxidation. Biosynthesis of fatty acids, triacylglycerols and phospholipids.

Recommended Text Books:

Suggested Reading:

IMMUNOLOGY

Course Code: MB 404
Total Number of Lecture hours: 48
Total Number of Credits: 03

This course aims to introduce host defense system and host-microbial interactions. It focuses on the essential concepts of immune factors and immune system. It elaborates further on the antigen-antibody and immune-diagnosis, an emerging advancement of immunology.

Unit- 1 10 h

Introduction to the field of Immunology: Historic perspective, Discovery of humoral and cellular immunity; Types of Immunity: Innate immunity components—physical, physiological defenses; – complement, acute phase proteins. Acquired immunity: (specific) natural, artificial, active and passive immunity. Inflammatory response; Phagocytic system—mononuclear phagocytes, macrophages, neutrophils, Natural killer cells, mast cells, basophils, and eosinophils.

Unit- 2 10 h

Organs, and tissues of immune system: Primary and Secondary Lymphoid organs—Thymus and Bone marrow; Lymph node, spleen and tonsils, MALT, GALT; cells of the humoral Immunity (HI) and Cell mediated Immunity (CMI); Immune tolerance; Antigen presenting cells (APCs),T lymphocytes, B lymphocytes. MHC restriction-antigen presentation, T-subsets; Cytotoxic T cell (CTL) mediated killing.

Unit- 3 10 h

Antigens and Antibodies: Immunogenicity versus Antigenicity, Nature of antigens; Role of T helper cells in B cell activation; Antibody-structure and functions-subtypes; structural basis of Antibody diversity; Theories of Antibody formation., Genetic basis of antibody diversity-somatic hyper mutation recombination, class switching and clonal selection, Recent advances in the production of monoclonal antibodies and their applications.

Unit- 4 10 h

Host-microbe interactions- antibacterial, antiviral and anti parasitic immune responses; Immune sytem Disoreders-Hypersensitivity-IV to TypeIV, Immunodeficiency diseases; Primary and secondary immunodeficiencies, AIDS; Auto immune diseases-organ specific and systemic; Vaccines—definition, conventional vaccines and modern trends in development of vaccines, recombinant and DNA vaccines; current vaccines, safety, active and passive immunization.

Unit- 5 8 h

Immunotechniques and Immunodiagnosis: Antigens and Antibody reactions in vitro; precipitation agglutination, complement fixation, ELISA, Western Blotting, Nanopro Immuno assay, Immunodiffusion, Immunoelectrophoresis, Immunofluorescence, Immunoprecipitation, Radioimmunoassay and Flowcytometry
Recommended Text Books:

1. Kuby Immunology- 6th edition. Publisher W. H. Freeman & Company

Suggested Reading:

MICROBIAL GENETICS

Course Code: MB 405
Total Number of Lecture hours: 48
Total Number of Credits: 03

Microbial Genetics is an important tool in dissecting the genetic structure of an organism. The basic principles presented in this paper is of major importance in constructing new organisms for practical applications leading to research in Genetic recombination and genetic engineering.

Unit- 1 10 h

Unit- 2 10 h

Viral Genetics- General characteristics of viral genome, T₄ virulent Phage- Structure- life cycle. Lambda temperate phage- Structure - Lytic and lysogenic cycle, Lysogenic repression. Genetic mapping of viruses, Recombination in viruses; Genetics of Bacteriophage.

Unit- 3 10 h

Unit- 4 8 h

Unit- 5 10 h

Gene Regulation and expression- Operon concept, Repression of the lac operon, Regulation of tryptophan biosynthesis operon by attenuation, catabolite repression instability of bacterial RNA, positive and negative regulation, inducers and co-repressors. Negative
regulation - *E. coli lac* operon; Regulation of the heat-shock regulon by an alternate sigma factor, Two component regulatory systems.

Recommended Text Books:

Suggested Reading:

This course deals with important macromolecules in biological system viz. Carbohydrates, Proteins, Lipids, Nucleic Acids. Students will study the fundamental concepts of these biomolecules, their structures, types and biological importance. It also deals with the major and minor bioelements like vitamins and metal ions. This syllabus will prepare students to study more advanced topics.

Unit-1
CARBOHYDRATES 10 h

Unit-2
LIPIDS AND STEROLS 10 h
Lipid Composition of Microorganisms - Naming of fatty acids, degree of unsaturation, essential and non-essential fatty acids, common types of membrane lipids: Phospholipids, Cholesterol, Glycolipids, Archaeal Lipids, ganglioside, cerebroside, sphingomyelin, triacylglycerols, arachidonic acid, prostaglandins, - properties, amphipathic molecules, micelle formation, liposomes, lateral diffusion, transverse diffusion, membrane fluidity, hydropathy plot, artificial membranes.

Unit-3
PROTEINS 10 h

Unit-4
NUCLEIC ACIDS 10 h

Unit-5
VITAMINS AND BIOELEMENTS 8 h
Vitamins: Classification, sources and properties - coenzymes - Bioelements: Major and minor bioelements, their sources and some of their functions in microorganisms.
Recommended Text Books:

Suggested Reading:

Microorganisms have tremendous metabolic diversity hence it’s intriguing to learn how these small creatures deal with different environmental conditions and either adopt themselves to it or convert it to favorable conditions by involving different physiological processes. The contents of this course will help students how microbes can grow on substrates other than glucose, their inorganic metabolism and photosynthesis and how do they respond to the changes in environment. It will elaborate the anaerobic respiration by variety of groups of microbes and non-genetic regulation at metabolic pathways.

Unit-1
METABOLIC DIVERSITY 10 h
Heterotrophic metabolism on substrates other than glucose
Hydrolysis of polymers - Starch hydrolysis, Cellulose hydrolysis, Oxidation of aliphatic hydrocarbons - Amino acid utilization: Oxidative deamination, Transamination - Oxidation of aromatic compounds - Methanotrophy; Characteristics of methanotrophs, Dissimilation of methane by methanotrophs - Carbon assimilation by methylotrophs - Energy efficiency in C1 metabolism

Unit-2
PHOTOSYNTHESIS AND INORGANIC METABOLISM 10 h
Characteristics and Metabolism of Autotrophs, Photosynthetic Bacteria and Cyanobacteria
Autotrophic CO₂ Fixation and Mechanisms of Photosynthesis, Photosystem I and II in cyanobacteria – Methanogenesis - Nitrification: Nitrifying Bacteria, Ammonia oxidation, Nitrite oxidation, anaerobic nitrification - Sulfur bacteria and the oxidation of sulfur compounds

Unit-3
ANAEROBIC RESPIRATION 10 h
Denitrification: Biochemistry of denitrification, - Regulation of denitrification - Metal reduction: Fe(III) and Mn(IV) reduction, Microbial reduction of other metals, Metal reduction and the environment - Sulfidogenesis: Biochemistry of sulfidogenesis, Reduction of sulfate and sulfur, - sulphur reducing bacteria.

Unit-4
METABOLIC REGULATION: 8 h
Regulation through modulation of enzyme activity: fine regulation, Feedback inhibition
Enzyme activity modulation through structural changes, Phosphorylation Adenylylation, Acetylation, Other chemical modifications, Regulation through physical modification and dissociation/association
AllostERIC regulation and Feedback control- Regulation of E. coli aspartate carbamoyltransferase

Unit-5
ADAPTIVE AND DEVELOPMENTAL CHANGES 10 h
Myxobacterial Developmental Cycle: Life Cycle of Myxobacteria, Aggregation and Fruiting Body Formation, Intercellular signaling in myxobacteria - Caulobacter Differentiation: Life Cycle of Caulobacter crescentus, The Stalk, the Holdfast, and the Flagellum: Structure,
Genetics, and Regulation, Regulation and Checkpoints of the Cell Cycle of *C. crescentus* -
Oxidative stress, Heat shock response, Quorum sensing, Response to changes in osmotic
pressure, Chemotaxis

Recommended Text Books:

2. Caldwell, D.R. 1995 Microbial Physiology and Metabolism, Wm. C. Brown
 Publishers, U.S.A.
3. White, D., 2003 The Physiology and Biochemistry of Prokaryotes, second edn,
 Oxford University Press

Suggested Reading:

 Publishers, Sunderland, Massachusetts.
 Washington. D.C.
 Benjamin Cummings. San Francisco.
This course aims to introduce the basic and applied Microbiology. The contents of this course will help students to understand importance of microorganisms. The microbial production of beverages, Antimicrobials, Organic acids and enzymes, Microbiology of wastewater and solid waste treatment, Plant Growth Promoting Rhizobacteria and Renewable bioenergy using microorganisms given in detail.

Unit-1 9 h

Unit-2 10 h

Antimicrobials, Organic acids and enzymes- microbial production of pencillin, Tetracycline and peptide antibiotics; Acetic acid; Lactic acid; Gluconic acid. Microbial production and commercial applications of Amylases, Proteases,Lipases. Biotransformation of steroids.

Unit-3 10 h

Unit-4 9 h

Unit-5 10 h

Recommended Text Books:

GENERAL MICROBIOLOGY LAB
Course Code: MB 441
Total Number of Credits: 01

1. Principles and methods of sterilization.
2. Direct microscopic observations of bacterial shape – cocci, rods, chains, fungal spores, mycelium, yeast budding.
3. Preparation of Media: Nutrient broth, Nutrient agar, plates, slants, soft agar.
4. Pure culture technique: Streak plate, spread plate and pour plate methods.
7. Enumeration of bacterial / yeast cells-viable count (Plate count) Total count (Haemocytometer count).
8. Isolation and purification of cyanobacteria, actinomycetes, fungi and protozoans.
9. Staining methods: Simple, Negative, acid fast, Gram staining , spore, Capsule,
10. Metachromatic granular staining, Lactophenol cotton blue staining - Fungal slide culture.

CELL AND MOLECULAR BIOLOGY LAB
Course Code: MB 442
Total Number of Credits: 01

1. Preparation of permanent slides
2. Observation of prokaryotic and eukaryotic cells and cell types
3. Study of cell organelles adopting preparations/models.
5. Squash preparation of onion root tip, testis and anther lobes.
6. Preparation of buccal smear.
7. Red blood cell as osmometer.
8. Subcellular fractionation and biochemical/ enzymological analysis.
9. Metaphase chromosome preparations and preliminary banding techniques.
MICROBIAL BIOCHEMISTRY LAB
Course Code: MB 443
Total Number of Credits: 01

1. Preparation of standard buffers and determination of pH of a solution.
2. Qualitative tests for Carbohydrates- Tests for sugars: Fructose, lactose, maltose, glucose and starch.
3. Qualitative tests for amino acids.
4. Quantitative estimation of glucose by DNS method
7. Determination of Iodine value.
10. Estimation of DNA/RNA

IMMUNOLOGY LAB
Course Code: MB 444
Total Number of Credits: 01

1. Virtual demonstration (as per UGC guidelines) of handling of laboratory animals.
2. Different ways of injecting antigens to mouse (IP, SC, IV, retroorbital)
3. Isolation of organs and tissues of immune system from mouse.
4. Quantification of Blood cells using Haemocytometer.
5. Precipitation on gels-Ouchterlony test and Mancini technique
6. Widal test
7. Immunoelectrophoresis
8. ELISA technique
9. Western blotting
10. VDRL test
This syllabus is designed to have a holistic approach about the bacteria. It is structured to have a comprehensive knowledge about the bacterial systematics, type study of major bacterial genera, basic principles to understand the bacterial ultrastructure, methods to isolate, detect and enumerate the bacterial growth and kinetics, economic importance of the bacteria with respect to agriculture, medicine & industry, control of bacterial diseases by chemotherapy and understanding the mode of action of the drugs.

Unit-1 10 h

Bacterial taxonomy and Diversity: Classification based on Bergey’s manual of Determinative Bacteriology-the Gram negative, Gram positive, the mycoplasmas and archea; Classification based on serology, biochemistry, 16s rRNA, G+C content and other molecular tools. Ultrastructure of Bacteria- bacterial size, shape, components of bacterial cell wall, cell wall synthesis, plasma membrane, Cytoplasmic matrix, nucleoid, Inclusion bodies, Ribosomes, Flagella and Pili. Staining procedures for identification of bacteria-Basic and Acidic dyes-methylene blue, saffranine, Grams stain, acid fast staining, flagella and spore stains.

Unit-2 8 h

Biology of bacteria: Staphylococcus, streptococcus, Pneumococcus, Nesseria, Corynebacterium, Bacillus, Clostridium, Proteus, Shigella, Salmonella, Vibrio, Pseudomonas, Yersinia, Haemophilus, Bordetella, Brucella, Mycobacterium, Spirochetes, Mycoplasmas, rickettsiae and chlamydiae.

Unit-3 10 h

Bacterial growth: Culture conditions for bacteria -bactetrial culture media- chemically defined, complex, differential and special selective media - for aerobic and anerobic bacteria; Bacterial growth curve-Phases of Growth; Effect of physical and chemical factors on growth - pH, temperature, media components and radiation. Measuring bacterial growth- Spectrophotometric method, microscopic counting, serial dilution and viable cell count, MPN, and filtration technique. Bacterial reproduction-fission, budding and endospore formation.

Unit-4 10 h

Economic importance of bacteria: A brief account on the economic importance of bacteria in Agriculture-Nitrogen fixing organisms; ecological importance-bioremediation and biopesticides; Industrial importance- source of antibiotics, production of recombinant proteins- growth factors, hormones, vaccines etc. Normal flora in the GIT and their advantages.
Antibacterial agents: Mode of action of antibiotics and chemotherapeutic drugs. Antibiograms. Antibiotic sensitivity assays - disc method; replica plating technique; Ames test; Antibiotic resistance in bacteria- various factors that contribute to the development of resistance, Bacterial quorum sensing, Biofilms.

Recommended Text Books:

Suggested Reading:

This paper deals with recognizing fungi as model systems in biological sciences, applications of modern research techniques, agricultural and industrial concerns, and increased awareness of various ecological and phylogenetic issues by understanding their distribution, occurrence, structure, and classification. All have helped to an explosion of knowledge relating to fungi with a traditional base.

Unit-1

Unit-2

Unit-3

Unit-4

Endophytic fungi - symbiotic and opportunistic associations, co evolution and loss of reproductive structures, Secondary metabolite production, toxins – importance, toxicity to herbivores and insects. Use of endophytic fungi as biocontrol agents against plant diseases, insect herbivores. Mycorrhizal associations – endo and ecto mycorrhiza.

Unit- 5

Significance of fungi in human and livestock health - symbiotic fungi, toxigenic fungi and mycotoxins, pathogenic fungi; Significance of yeasts and fungi in agricultural production – symbiotic fungi, fungi in improving plant productivity, toxigenic fungi and mycotoxins, plant pathogenic fungi, fungi in biocontrol; Significance of fungi in biotechnology and industrial production; Fungal metabolites and their economic significance – mycotoxins, medicinal uses of fungi (antibiotics), food additives, alcohol, vinegar, enzymes, biopesticides. Fungi as food – mushrooms, Mushroom poisoning.
Recommeneded Text Books:

1. Ainsworth (2009), Introduction to the History of Mycology, Cambridge University Press

Suggested Reading:

Virology syllabus is structured from basic virology to the advanced techniques in virology. This paper provides an insight into the history, ultra structure and diagnosis of virus. Various groups of virus and their detail study is the main feature of this syllabus apart from the recent advances in the virology like antivirals & their mode of action, Antisense RNA, siRNA, ribozymes and in silico approaches for drug designing. Emerging virus and challenges also included in the course structure for better understanding of the up to date developments in the field of virology.

Unit-1
10 h

Unit-2
10 h

Unit-3
10 h

Unit- 5

Recommended Text Books:

Suggested Reading:

rDNA TECHNOLOGY

Course Code: MB 454
Total Number of Lecture hours: 48
Total Number of Credits: 03

This course aims to introduce gene cloning and strategies of rDNA technology. This paper provides an insight into the vectors and techniques in rDNA technology. The techniques are elaborated with PCR, hybridization, cDNA library construction and gene transfer. The legal and ethical issues are covered to understand the applications and consequent issues of GMOs.

Unit-1 10 h

Introduction- History of nucleic acid, role of genes inside the cell, genetic code, genetic elements that control gene expression. Enzymes in recombinant DNA technology- DNA polymerase, reverse transcriptase, restriction endonucleases, polynucleotide kinase, terminal deoxynucleotidyl transferase, DNase, Methylase, phosphatases, ligases RNase and their mode of action. Vectors in recombinant DNA technology Introduction to cloning vectors, biology and features of vectors, types of vector - plasmids, cosmids, phages, BAC and YAC and viruses.

Unit- 2 10 h

Nucleic acid amplification and hybridization Techniques - Polymerase chain reaction (PCR) and its applications, variations in PCR and applications, methods of nucleic acid detection, methods of nucleic acid hybridization, sequencing methods, probes and target sequences, Southern blotting, Northern blotting, in situ hybridization, nucleic acid mutagenesis in vivo and in vitro.

Unit-3 8 h

Construction of DNA library- Construction of genomic and cDNA libraries, Screening libraries with gene probes, colony hybridization, plaque hybridization, screening by gain of function, immunological screening.

Unit- 4 10 h

Gene transfer techniques- Gene transfer techniques in microbes, animals and plants - transformation, electroporation, microprojectile system, liposome mediated gene transfer, DNA/calcium phosphate co-precipitate method, genegun, transfection with phage vectors etc. Agrobacterium based gene transfer in plants - Ti plasmid: structure and functions, Ti plasmid based vectors. Chloroplast transformation.

Unit-5 10 h

Applications and legal issues- Applications of recombinant DNA technology in Agriculture, Veterinary, Industry, Forensic science and Medicine. Gene mapping-restriction mapping, RFLP, RAPD, AFLP. Engineering microbes for the production of antibiotics, enzymes, Insulin, growth hormones, monoclonal antibodies etc. Transgenic organisms from mice to rice, Human genetic engineering and Gene therapy- methods of gene therapy, gene therapy in
treatment of diseases, Stem cell therapy, Future of stem cell therapy. Science and the constitution- ethical, legal and environmental issues.

Recommended Text Books:

Suggested Reading:

This course aims to introduce various techniques and instrumentation methods required for the study of microorganisms. This paper provides understanding on techniques and methods of microscopy, spectroscopy, chromatography and electrophoresis. Recent advances in DNA sequencing methods are covered to understand microbial genomes in the progressive semester.

Unit- 1 10 h

Unit- 2 10 h

Spectroscopy - Electromagnetic spectrum, Beer Lambert’s Law. Photometry, UV/VIS Spectrophotometry, Infrared spectroscopy, Atomic absorption spectroscopy, ESR and H and C NMR spectroscopy. Mass spectroscopy (LC-MS, GC-MS). Fluorescent spectroscopy, principle, instrumentation and application of MALDI-ToF.

Unit- 3 8 h

Chromatography - Introduction and types of chromatography, paper, thin layer, gas, partition, Gel permeation, ion-exchange, HP-TLC, HPLC, FPLC and affinity chromatography and instrumentation. Applications of Chromatographic techniques in Microbiology.

Unit- 4 10 h

Electrophoresis and Blotting techniques - Paper and gel electrophoresis, PAGE (native and SDS), Agarose gel electrophoresis, PFGE, Blotting- Southern, Western and Northern blotting, Immunoblotting. Labelling and Detection methods - Nature and types of radiations, preparation of labelled biological samples. Detection and measurement of radioactivity, GM counter, Scintillation counter, Autoradiography, Flow cytometry. Safety measures in handling radioisotopes. RIA, non radiolabelling.

Unit- 5 10 h

DNA sequencing methods - Major landmarks in DNA sequencing - Maxam-Gilbert sequencing, Chain-termination methods, Advanced methods and de novo sequencing, Shotgun sequencing, Next-generation methods, Massively Parallel Signature Sequencing (MPSS), Polony sequencing, 454 pyrosequencing, Illumina (Solexa) sequencing, SOLiD sequencing, Ion semiconductor sequencing, DNA nanoball sequencing, Heliscope single molecule sequencing, Single molecule real time (SMRT) sequencing.
Recommended Text Books:

Suggested Reading:

The world’s oceans are experiencing unprecedented stresses due to human impacts such as increased nutrient runoff, over-fishing, and increased emissions of greenhouse gases that are causing pervasive changes in ocean chemistry and temperature. The basic knowledge and tools to predict how these changes will affect critical ocean ecosystems upon which society relies for many important functions. This paper is designed introduce the students to understand microbial processes and dynamics of marine environment.

Unit 1

Unit 2

Dynamics of Marine Microbes - Carbon cycle: Phototrophic microbes, the oceanic carbonate system and global warming - Nitrogen cycle: Nitrogen fixers – Iron limitation – ocean fertilization - phosphorus cycle; Decomposition of organic matter; Bioleaching and biodeterioriation of natural and synthetic materials

Unit 3

Microbial products: Microbial interaction Microbes of Biotechnological importance; Primary and secondary metabolites - enzymes, antibiotics, organic acid, toxins, biosurfactants and pigments

Unit 4

Unit 5

Recommended Text Books:

MICROBIAL NANOTECHNOLOGY

Course Code: MB 472
Total Number of Lecture hours: 48
Total Number of Credits: 03

This discipline helps to indicate the merger of biological research with various fields of nanotechnology. This technical approach to biology allows scientists to imagine and create systems that can be used for biological research. The most important objectives that are frequently found in nanobiology involve applying nanotools to relevant medical/biological problems and refining these applications. Developing new tools for the medical and biological fields is another primary objective in nanotechnology. Microbes are playing an important role in the synthesis of nanoparticles. This syllabus would enlighten the students to understand basic concepts and application of nanotechnology.

Unit – 1
9 h

Introduction to Nanotechnology: Characteristic scale for quantum phenomena, nanoparticles, nano-clusters, nanocomposite, nanotubes, nanowires and emergence of bionanotechnology. Characterization of nanoparticles – UV-Vis spectroscopy, Electron Microscopy – HRTEM, SEM, AFM, EDS, XRD.

Unit – 2
9 h

Unit – 3
9 h

Preparation of nanobiomaterials – Polymeric scaffolds collagen, Elastins: Mucopolysaccharides, proteoglycans, cellulose and derivates; Dextrans; Alginates; Pectins; Chitin. Nanoparticles – types, functions – Silver, Gold and Titanium. Physical and chemical properties of nanoparticles.

Unit – 4
12 h

Recommended Text Books:

This course designed to introduce the essential fundamentals of Agriculture Microbiology. This course focuses on the concepts of Agricultural Microbiology such as Soil Environment, Major plant diseases caused by fungi, bacteria and viruses, biopesticides & biofertilizers and plant microbe-interactions.

Unit-1 10 h

UNIT-2 10 h
Major plant disease symptoms caused by fungi, bacteria and viruses. Plant diseases – Principles, symptoms and control measures of the following diseases: Fungal – Tikka, red rot of sugarcane, Fusarium wilts (red gram and cotton), Sclerotium rolfsii and Macrophomina phaseolina (collar rot disease, charcoal rot). Bacterial – Blight of rice, citrus canker, Xanthomonas (black rot). Viral and mycoplasmal – Bud necrosis of groundnut, citrus mosaic, little leaf of brinjal, tomato leaf curl. Principles of plant disease control. Protection - Diseases of field, vegetable, orchard and plantation crops of India and their control; causes and classification of plant diseases; principles of plant disease control biological control of diseases.

UNIT-3 10 h

UNIT-4 9 h
Biopesticides – Bacillus thuringiensis, B. sphaericus, B. popilliae, Psuedomonas syringae. Biocontrol- Microbial control of plant pathogens- Trichoderma. Useful genes from microorganisms for agriculture (herbicide resistant, Bt, viral). Biological Control – Use of Baculovirus, NPV virus, protozoa & fungi in biological control.

UNIT-5 9 h
Molecular plant microbe-interactions: Cell signalling, Quorum sensing, and Biofilm formation. Invasion of plant tissue:- resistance mechanisms against attack by plant pathogens.
Molecular detection of pathogens. Integrated pest management-concepts and components; host plant resistance-biological control of insect pests; Recycling of agricultural wastes - Microbiology and biochemistry of biogas, bioethanol and other value added products. Mushroom cultivation and Vermicomposting.

Recommended Text Books:

2. Agricultural Microbiology by G.Rangaswamy and Bagyaraj, Prentice Hall India.
6. Plant Growth and Health Promoting Bacteria by Dinesh K. Maheshwari
7. Plant-microbe interactions, Volume 1 by Gary Stacey and Noel T. Keen
8. Biological control of crop diseases Volume 89 of Books in soils, plants, and the environment by S. S. Gnanamanickam
This course provides the learner some of the significant developments in the area of Plant Pathology and material on specific microbial diseases in plants, how plants defend themselves against pathogens, with impetus to fungal diseases and development of mechanisms to produce disease-resistant plants. This becomes important mainly because of the current development of plant pathology as a science and its potential future impact on plant disease control.

Unit- 1 8 h

Plants and Disease: The concept of disease in plants, History of Plant Pathology, Early significant plant diseases, Plant Pathology in the 20th century, Types of Plant diseases, Losses caused by plant diseases, Plant Pathology- today and future.

Unit- 2 10 h

Parasitism and Disease Development: Parasitism and Pathogenicity, Host range of pathogens, Development of disease in plants, Stages in disease development: The disease cycle- Inoculation, Pre-penetration phenomena, Penetration, Infection, Dissemination of the pathogen, Relationship between disease cycles and epidemics.

Unit- 3 10 h

Genetics of Plant Disease: Introduction, Genes and disease, Types of plant resistance to pathogens, The nature of resistance to disease- Pathogenicity genes in plant pathogens, Genes controlling; a) Degradation of cuticle and cell wall, b) Production of secondary metabolites- fungal toxins; Resistance (R) genes of plants.

Unit- 4 10 h

Plant Diseases caused by Fungi: General Characteristics of plant pathogenic fungi- Morphology, Reproduction, Ecology & Dissemination; Symptoms caused by fungi on plants, General characteristics of diseases caused by Myxomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.

Unit- 5 10 h

Control of Plant Diseases: Methods that exclude the pathogen from the host- Quarantines and Inspections, Crop certification, Evasion or avoidance of pathogen, use of pathogen free propagating material, pathogen-free seed, pathogen-free vegetative propagating materials.

Methods that eradicate or reduce pathogen inoculum; Disease control by immunization/improving host resistance; Direct protection of plants from pathogens; Integrated control of plant diseases.
Recommended Text Books:

II-Semester Lab Courses

BACTERIOLOGY LAB

Course Code: MB 491
Total Number of Credits: 01

1. Introduction to good laboratory practices and sterilization techniques & Preparation of different nutrient media-Liquid and Solid media-minimal, complex and differential media
2. Isolation of bacteria from air, water, soil
3. Morphological characteristics of bacteria-Staining techniques – simple and Gram’s staining Endospore staining, Flagella staining and Capsule staining
4. Bacterial culture techniques-Liquid broth culture & Pure culture techniques-serial dilution technique, Pour plate, spread plate, streak plate techniques.
5. Measurement of bacterial population by turbidimetry and colony counting by serial dilution of samples
6. Bacterial growth curve
7. Antibiotic sensitivity tests-disc method
8. Preservation of pure cultures: slant preparation, water stock, glycerol stock
9. Biochemical tests for bacterial identification
10. Detection of bacterial pathogens by PCR method.

MYCOLOGY LAB

Course Code: MB 492
Total Number of Credits: 01

1. Methods of isolation and identification of fungi by traditional methods.
2. Preparation of pure culture and preservation of culture.
3. Isolation and identification of endophytic fungi from plants.
4. Observation and identification of mycorrhiza.
5. Isolation and identification of fungi from seeds.
6. Study of soil fungi from varied geographical origins.
7. Isolation of antibacterial/ antimycotic compounds from fungi.
8. Staining and observation of plant pathogenic fungi.
VIROLOGY LAB

Course Code: MB 493
Total Number of Credits: 01

1. Isolation of bacteriophages from sewage
2. Estimation of virus yields - plaque assay
3. Routes of inoculations in embryonated eggs
4. Haemagglutination test
5. Hemagglutination inhibition assay
6. Biocontrol assay on insect larvae using NPV
7. ELISA test
8. Study of virus infected plant material.
9. One step growth curve of bacteriophage by Burst size determination.
10. Demonstration of identification of arthropod vectors of viral transmission

TECHNIQUES IN MOLECULAR CLONING LAB

Course Code: MB 494
Total Number of Credits: 01

1. Isolation of Genomic DNA and quantification.
2. Isolation of Plasmid and quantification.
3. Preparation of Vector and Insert by restriction digestion.
4. Preparation of competent cells using CaCl₂.
5. Ligation reaction of restriction digested Vector and Insert.
6. Transformation of recombinant DNA.
7. PCR amplification of gene of interest.
8. Isolation of RNA and quantification.
9. Reverse transcriptase PCR.
10. Restriction Fragment Length Polymorphism (RFLP) analysis
11. Quantitative Real Time –PCR(Demonstration)
Course Code: MB 495
Total Number of Credits: 01

1. Study of simple and compound microscopes, their handling including oil immersion objective.
2. Absorption spectra- UV-Visible.
4. Ion exchange chromatography.
5. SDS Gel electrophoresis.
6. Agarose Gel electrophoresis
7. PCR technique
8. Quantitative Real time-PCR (Demonstration)
9. Scanning Electron Microscope (Demonstration)
10. Western Blot
This course deals with importance of the microorganisms in human health. The basic concepts and medical terms will be explained along with information related to biosafety levels. Modes of transmission, host-pathogen interactions will be discussed in detail. Students will study important diseases by body system with reference to the etiology, pathogenesis, treatment, diagnosis and prevention.

Unit- 1 8h

Unit- 2 10 h

Unit- 3 10 h

Infections of Skin: Etiology, Pathogenesis, Laboratory diagnosis, prophylaxis and treatment of Bacterial: Staphylococcus; Streptococcus, Pseudomonas; Viral: Chicken Pox, Measles, Fungal: Cutaneous and Subcutaneous Mycoses Protozoal: Leishmania. Infections of Gastrointestinal System: Etiology, Pathogenesis, Laboratory diagnosis, prophylaxis and treatment of Bacterial: Salmonella, Shigella, E. coli, Viral: Hepatitis, Protozoal: Entamoeba,

Unit- 4 10 h

Unit- 5

Text Books:

3. Bauman, R.W. 2009. Microbiology: with diseases by body system; Benjamin Cummings

Suggested Readings:

The Food Microbiology paper would enable students to learn about the epidemiology of food-borne diseases and the pathogens. Also, the study would equip them to study various methods of pathogen detection available along with understanding the beneficial and harmful effects of microbes in the food industry. Food Safety standards are also highlighted.

Unit-1 10 h

Historical Perspective and Scope of Microbiology in relation to food - Importance and significance of microorganisms in food. Factors – Intrinsic and Extrinsic parameters affecting the growth of microorganisms in food. Food borne diseases- Bacterial food borne diseases- (Staphylococcal intoxication, Botulism, Salmonellosis, Shigellosis, EPEC Diarrhoea, *Clostridium Perfringens* gastroenteritis, *Bacillus cereus* gastroenteritis; Food-borne fungi- Mycotoxins- Aflatoxicosis, Deoxynivalenol, Mycotoxicosis, Ergotism. Food Borne Viral Pathogens- (Norwalk virus, Reovirus, Rotavirus, Adenovirus, Parvovirus, Hepatitis A Virus) Food Borne Animal Parasites- Protozoa – Giardiasis, Amebiasis, Toxoplasmosis, Cryptosporidiosis. Cysticercosis/ Taeniasis; Roundworm – Trichinosis, Anisakiasis.

Unit-2 10 h

Detection of foodborne pathogens - Detection and Enumeration of microorganisms and their products in food- Culture dependent methods- Sample collection and processing, analysis, surface testing, Direct microscopic observation, enumeration and isolation methods; Animal and Cell Culture Models to study foodborne pathogen interaction; Culture independent techniques – Metagenomics, Biosensor based detection of food pathogens, Nucleic-acid based methods- PCR; Immunological methods to detect food-borne pathogens; Molecular Typing and Differentiation of Food-borne Bacterial Pathogens; Analytical methods for microbial metabolites- microbial toxins and metabolites.

Unit-3 9 h

Food spoilage and Food preservation - Organisms involved, characteristic features, dynamics and significance of spoilage of different groups of foods - Cereal and cereal products, vegetables and fruits, meat, poultry and sea foods, milk and milk products, packed and canned foods. Spoilage and defects of fermented foods. Food preservation- High temperature, Low temperature- Significance of psychrophilic microbes in cold-stored and frozen foods, Drying, Chemical, Modified atmosphere, Radiation, other food protection methods and Microbial Resistance.
Unit- 4 10 h

Microbiology of Food fermentations- Milk, Fermentation, Fermented and Non-fermented Dairy Products. Food fermentations- Manufacture of fermented foods- Meat and fishery products, plant products- Sauerkraut and fermented olives, breads, beverages. Microbial cells as food- SCP, mushroom cultivation. Source and applications of microbial enzymes, antioxidants, biosurfactants, polysaccharides, flavors and colors. Probiotics and their advantages, Genetically modified foods.

Unit- 5 9 h

Food safety and Quality Management Systems- General principles of food safety risk management, Recent concerns on food safety- Safe food alternatives (Organic foods), Good agricultural Practices (GAP), Food Indicators of water and food safety and quality-Microbiological criteria of foods and their Significance. The HACCP and ISO systems for food safety.

Recommended Text Books:

Suggested Reading:

APPLIED & INDUSTRIAL MICROBIOLOGY

Course Code: MB 503
Total Number of Lecture hours: 48
Total Number of Credits: 03

The syllabus of applied and industrial microbiology is oriented towards the industrial application of microorganisms and recent microbial products. After studying this paper students will know the applied and industrial aspects of microbiology such as screening of microorganisms, strain improvement, microbial metabolites, fermented microbial products, microbial enzymes, Biofuels using microbes and microbial production of Biopolymers. The recent applications of the microbes for the human welfare are well structured in this paper.

Unit- 1 10 h

Basics of Industrial Microbiology: Historical account of microbes in industrial microbiology; sources and characters of industrially important microbes; their isolation, purification and maintenance; Screening of useful strains; primary screening and secondary screening; Strain improvement through random mutation and genetic engineering; types of fermentation and fermenters. Microbial growth kinetics in batch, continuous and fed-batch fermentation process.

Unit- 2 10 h

Unit- 3 10 h

Fermented Microbial products: Microbiology and production of alcoholic beverages; Malt beverages, distilled beverages, wine and champagne; Commercial production of organic acids like acetic, lactic, citric, and gluconic acids; Commercial production of important amino acids (glutamic acid, lysine and tryptophan), and vitamins (riboflavin and vitamin A).

Unit- 4 9 h

Microbial enzymes: Immobilization of microbial enzymes and whole cells and their applications in industries; Industrial enzymes production; Cellulases, Xylanases, Pectinases, Amylases, Lipases and Proteases and their applications. Enzymes involved in microbial biocatalysis/transformations.
Unit- 5

Biofuels & Biopolymers: Biofuels (ethanol and methane) from organic residues; fuels from algae; Mushroom cultivation; other microbial products - Biopolymers and EPS, Bioplastics, Biosurfactants, effluent treatment, SCP.

Recommended Text Books:

Suggested Reading:

ENVIRONMENTAL MICROBIOLOGY

Course Code: MB 504
Total Number of Lecture hours: 48
Total Number of Credits: 03

Environmental Microbiology is historic as well as eminently modern. The activities of the microorganisms at large in nature/environment is considered in this paper. Microbes play far more important roles in nature than their small sizes would suggest. In order to evaluate the roles of microorganisms in ecosystems, it is essential to understand the precise natural habitats and how their activities can be explored.

Unit- 1

Microbial ecology: Interaction between abiotic and biotic factors in an ecosystem, ecological niche, limiting factor, concept of community, fluctuation and succession. Ecological pyramid, energy flow, food chain, food webs and their dynamism, stability and complexity of ecosystem. Interactions between microbes and organisms at other trophic levels: commensalism, mutualism, parasitism and predation with examples.

Microbial communities: Microenvironment and niche, communities in soil, water, air. Biofilms, microbial mats and their significance.

Unit- 2

Unit- 3

Aquatic Microbiology: The aquatic environment - major environmental conditions influencing microflora. Distribution of microorganisms in the aquatic environments - freshwater environment, estuaries and marine environment. Microbiology of drinking water, water pollution, purification of water for human consumption. Assessment of microbial status in water and waste water. Wastewater characteristics, Effluent treatment processes (like trickling filter, activated sludge, oxidative pond, anaerobic digestion and chemical disinfection).

Unit- 4

Microbial control of insects. Beneficial association between plant and microorganisms (association of plants with cyanobacteria, actinomycetes and fungus).

Unit- 5

10 h

Biofertilizers: Bacterial bio fertilizer: *Rhizobium, Azotobacter, Azopirillum, Acetobacter diazotrophicus* - phosphobacteria and Frankia. Algal fertilizer - Blue green algae, Azolla – Importance. Fungal fertilizers - Mycorrhizae – ecto and endomycorrhiza. Principles of mass production, Quality Control and Field applications. **Bioremediation:** Factors affecting the bioremediation process, Bioremediation of toxic waste sites; Role of microbes; Microbial degradation of environmental pollutants- industrial solvents, pesticides, petroleum hydrocarbons, xenobiotics; Bioremediation practices and technologies.

Recommended Text Books:

Suggested Reading:

MICROBIAL GENOMICS

Course Code: MB 505
Total Number of Lecture hours: 48
Total Number of Credits: 03

This course aims to understand advancement of Microorganisms using culture-independent approaches. Microbial Genomics, Metagenomics and Bioinformatics are new dimensions of approaches in exploring the microbial world. Without these new dimensions, a Microbiology student could not apply his knowledge in research and development activities. Therefore, this course could enable the students to perform analysis and interpretation of microbial phylogeny.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structural and functional genomics</td>
</tr>
</tbody>
</table>

- **Definition**, historical prospective and strategies.
- Genome Structure: genome sizes – microbial and organelle genome – genome physical mapping and sequencing – tools in genome analysis; Structural and functional annotations of genes and genomes. An overview of genome projects: human, plant, animal and microbial genomes.
- Analysis of Human Genome Map repositories: NCBI – Entrez Human genome map viewer, Human Microbiome project – Earth Microbiome project - hologenome theory.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Whole genome library</td>
</tr>
</tbody>
</table>

- Need of genome library, methodology, Enzymes used in genome library construction, Vectors for library construction, Genomic libraries in high-capacity vectors, cDNA cloning, Shotgun cloning, Whole genome shotgun sequencing: DNA sequencing theory pair wise and end sequencing, The Institute for Genomic Research (TIGR), Celera Genomics.
- Hierarchical Shotgun sequencing, Next-generation sequencing and full genome sequencing platforms.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Metagenomics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Taxonomy and phylogeny</td>
</tr>
</tbody>
</table>

- Basic concepts in systematics, taxonomy and phylogeny; molecular evolution; nature of data used in Taxonomy and Phylogeny, Definition and description of phylogenetic trees and various types of trees, Phylogenetic analysis algorithms such as maximum Parsimony, UPGMA, Transformed Distance, Neighbors-Relation, Neighbor- Joining.
Unit- 5 9 h

Synthetic microbiology and bioengineering

Introduction to synthetic biology - Metabolomics and synthetic microbiology, predictive model building (metabolomes) - Secondary metabolism and synthetic biology - synthetic bacterium, Mycoplasma laboratorium

Recommended Text Books:

2. Sudbery, Human Molecular Genetics Prentice Hall, 2002
3. Pasternak, An Introduction to Molecular Human Genetics
4. Strachan and Read, Human Molecular Genetics
5. 4. G. Grandi. 2003, Genomics, proteomics and Vaccines

Suggested Reading:

1. Necia Grant Cooper; (Ed.) 1994. The Human Genome Project; Deciphering the Blueprint of heredity University Science books, CA, USA.
Course Code: MB 521
Total Number of Lecture hours: 48
Total Number of Credits: 03

This course aims to introduce technological advancement of fermentation and bioprocess for industrial applications. Microorganisms are capable of growing on a wide range of substrates and can produce a remarkable spectrum of products. This course will enlighten the students on basics of fermentation, metabolic engineering, fermenter design and downstream processing. The economics and IPR of industrial products are introduced to understand commercialization of microbial products.

Unit- 1 10 h

Introduction to fermentation technology: Interaction between chemical engineering, Microbiology and Biochemistry. History of fermentation. Introduction to fermentation processes, Microbial culture selection for fermentation processes - Fermentation Pathways for Industrial Products: Biochemical pathways of metabolic reactions for utilization of carbon sources and formation of different metabolites by microorganisms; possibility of control of the reactions for the increased formation of useful metabolites. Strain Development - Various techniques of modifying the strains for increased production of industrial products.

Unit- 2 10 h

Unit- 3 9 h

Bioreactors: Design of a basic fermenter, bioreactor configuration, design features, individual parts, baffles, impellers, foam separators, sparger, culture vessel, sterilization of media - cooling and heating devices, probes for online monitoring, computer control of fermentation process-PID, measurement and control of process. Reactors for specialized applications: Tube reactors, packed bed reactors, fluidized bed reactors.

Unit- 4 9 h

Downstream Processing: Introduction, removal of microbial cells and other solid matters, Filtration: Theory, Batch filters (plate and frame filters, pressure leaf filters), Continuous filters (rotary vacuum, Cross flow filtration); Centrifugation, Cell aggregation and flocculation, Types of centrifuges (basket centrifuges, tubular bowl centrifuge etc); Cell disruption: Physical mechanical methods and chemical methods - solvent extraction of
product; evaporation chromatographic systems for separation and crystallization; drying
techniques

Unit- 5

Bioprocess economics - Bioprocess regulation - General fermentation economics.
Intellectual Property Rights (IPR), Patents, Trademarks, Copyrights, Secrets, Patenting of
biological materials, international co operation, obligations with patent applications,
implication of patenting, current issues, hybridoma technology etc. Patenting of higher plants
and animals, transgenic organisms and isolated genes, patenting of genes and DNA
sequences.

Recommended Text Books:

Pergaman. McNeul and Harvey.
2. Fermentations - A practical approach. IRL.
5. Biotechnology - A Text Book of Industrial Microbiology by Cruger.
6. Fermentation Biotechnology: Industrial Perspectives by Chand.
 Springer Verlag Publications, New York.
10. Biotechnology- A textbook of Industrial Microbiology by Creuger and Creuger, Sinaeur
 Associates.
 Veith, W.F., John Wiley and Sons.
12. Industrial Microbiology by L.E. Casida, Wiley Eastern
13. Bioseparation: Downstream processing for Biotechnology by Belter, P.A. Cussler,
 E.L.and Hu, W.S., John Wiley and Sons, N.Y.
17. Fermentation, Biocatalysis and bioseparation, Encyclopedia of Bioprocess Technology
 by Chisti, Y., Vol. 5, John Wiley and Sons, N, Y.
 Publishers.

Suggested Reading:

 Pergamon Press.
7. Heinemann Industrial Microbiology by G. Reed (Ed), CBS Publishers (AVI Publishing.)
9. Genetics and Biotechnology of Industrial Microorganisms by C.I. Hershnergey, S.W.
GENOME TECHNOLOGY

Course Code: MB 522
Total Number of Lecture hours: 48
Total Number of Credits: 03

Unit-1
9 h
An introduction to genetic technology - Enzymes used in genetic engineering - Restriction endonucleases, DNA polymerases, Reverse transcriptase, Ligases, Polynucleotide kinase, Alkaline phosphatase, Nuclease, Klenow fragment, Terminal deoxynucleotidyl transferase, RNase. Vectors for cloning- Plasmids, Bacteriophage, Filamentous phage vectors, Cosmids, Phagemids, YACs. Ligation of DNA fragments with vectors - Homopolymer tailing, Ligation of cohesive termini, Blunt-end ligation, Linker molecules.

Unit-2
10 h
Introducing genes into prokaryotes- Natural gene transfer methods-Transformation, transduction, calcium chloride mediated transformation, Transfection with phage vectors. Introducing genes into eukaryotes- Gene transfer by viral transduction, Calcium phosphate mediated transformation; Liposome mediated transformation, Microinjection, Electroporation.

Unit-3
9 h
Cloning strategies: Producing genomic libraries in cloning vectors, Genomic libraries in high-capacity vectors, cDNA cloning, Shotgun cloning, Cloning in E.coli, Identifying the recombinant DNA and its products- Immunochemical screening, Hybrid arrested translation, Nucleic acid probes.

Unit-4
10 h
Prokaryotic expression systems Gene expression based on bacteriophage T7 RNA polymerase, Eukaryotic expression systems- Fused genes, Unfused genes, Secreted proteins, Gene expression by transcription factors- Nfkb, PPAR, Antisense RNA technology- SiRNA, miRNA.

Unit-5
10 h
Techniques in genetic technology- Hybridization technique, Southern, Northern-Western blotting techniques, Site directed mutagenesis, Restriction mapping, DNA profiling in forensic science, Chromosome walking, Chromosome jumping, DNA sequencing, PCR. Basic concepts of Intellectual property rights.

Recommended Text Books:
This course will help the student to understand taxonomy and molecular biology methods of cyanobacteria. The course will give knowledge on function of photosystem of cyanobacteria, the mechanisms of differentiation of heterocytes and hormogonia, molecular regulation of carbon dioxide and nitrogen metabolism and application of cyanobacteria.

Unit 1: 8 h
Introduction: Origins of life and photosynthesis, Diversity of cyanobacteria, Fossil history of cyanobacteria The Oceanic Cyanobacterial Picoplankton.

Unit 2: 8 h
Genomics of Cyanobacteria: Gene transfer to cyanobacteria in lab and in nature, Molecular ecology and environmental genomics of cyanobacteria, comparative genomics of marine cyanobacteria, stress response-regulatory system and regulated genes.

Unit 3 10 h
Molecular Biology of cyanobacteria: Molecular Biology of Cyanelles and Chloroplast Origins and Evolution; Supramolecular Membrane Organization; Phycobilisome and Phycobiliprotein Structures; The Use of Cyanobacteria in the Study of the Structure and Function of Photosystem II and The Cytochrome Complex; Photosystem I in Cyanobacteria; The F-type ATPase in Cyanobacteria: Pivotal Point in the Evolution of a Universal Enzyme.

Unit 4 8 h
The Biochemistry and Molecular Regulation of Carbon Dioxide Metabolism in Cyanobacteria, Genetic Analysis of Cyanobacteria, Heterocyst Metabolism and Development, Differentiation of Hormogonia and Relationships with Other Biological Processes;

Unit-5 8 h
Applications: Mass cultivation of cyanobacteria under outdoor and indoor conditions. Cyanobacteria as a source of fine chemicals: polysaccharides, bioactive molecules, pigments,

Text Books:

Reference Books:
Drug Design and Discovery course introduce the basic principles of modern drug design, discovery and development. The course deals with the different source of drug with specific focus on microbial source, drug development and manufacturing process. The course will have more focus on detection, selection, and validation of new antibacterial targets, vaccines and the use of gene technology in pharmaceutical industry.

Unit-1
9 h

Introduction- History of drug design, Current approaches and philosophies in drug design, Molecular mechanisms of diseases and drug action with examples. Pharmaceutical products, Pharmaceuticals of microbial origin (macrolides, ansamycins, Peptide and other antibiotics) animal origin (sex hormones androgens, Oestrogens, Progesterone and progestogens etc), plant origin (Alkaloids Atropine and scopolamine Morphine and cocaine Additional plant alkaloids)

Unit -2
10 h

Sources of Drugs- Microbial drugs, Plants as a source of drugs, E. coli as a source of recombinant therapeutic proteins. Expression of recombinant proteins in yeasts, animal cell culture systems. Additional production systems: Fungal production systems, Transgenic animals, Transgenic plants and Insect cell-based systems. Rational drug design and Combinatorial approaches to drug discovery.

Unit -3
10 h

Drug development process- Impact of genomics and related technologies upon drug discovery: Gene chips, Proteomics, Structural genomics and Pharmacogenetics.
Drug manufacturing process- Guides to good manufacturing practice, Production of final product - Cell banking systems, Upstream processing, Microbial cell fermentation, Mammalian cell culture systems, Downstream processing, Final product formulation, Freeze-drying, Labelling and packing

Unit-4
10 h

Vaccines and adjuvant- Traditional vaccine preparations, attenuated, dead or inactivated bacteria, Attenuated and inactivated viral vaccines, Toxoids, antigen-based and other vaccine preparations. Impact of genetic engineering on vaccine technology. Peptide vaccines Vaccine vectors. Development of an AIDS vaccine, Difficulties associated with vaccine development, AIDS vaccines in clinical trials, Cancer vaccines, Recombinant veterinary vaccines. Adjuvant technology: Adjuvant mode of action, Mineral-based adjuvants ,Oil-based emulsion adjuvants Bacteria/bacterial products as adjuvants

Recommended Text Books:

Reference Books:

III-Semester Lab Courses

MEDICAL MICROBIOLOGY LAB

Course Code: MB 541
Total Number of Credits: 01

1. Study of normal micro-biota of mouth; isolation, identification and preservation of microorganisms
2. Study of normal micro-biota of skin; isolation, identification and preservation of microorganisms
3. Identification and Biochemical tests of respiratory tract bacterial pathogen (using avirulent strain of MTCC Culture of – Streptococci/ Klebsiella pneumoniae).
4. Identification and Biochemical tests of gastrointestinal bacterial infection (using avirulent strain of MTCC Culture of) – Salmonella / Shigella sps.
5. Laboratory examination and identification and biochemical tests of pus specimens (using avirulent strain of MTCC Culture) for Staphylococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa.

FOOD MICROBIOLOGY LAB

Course Code: MB 542
Total Number of Credits: 01

1. Examination of microbial load in soft drinks, ice creams, packaged and canned foods.
2. Isolation and identification of food poisoning bacteria from contaminated foods, dairy products.
3. Isolation and identification of food spoilage fungi from foods.
4. Isolation, extraction and detection of aflatoxin from foods.
5. Production and estimation of lactic acid by Lactobacillus Sp. / Streptococcus Sp.
6. Role of microbes in fermented foods- Bread making, Sauerkraut.
7. Detection of number of bacteria in milk by standard plate count (SPC).
8. Determination of quality of milk sample by methylene blue reductase test.
9. Assessment of water quality by Multiple Tube Fermentation Test.
APPLIED & INDUSTRIAL MICROBIOLOGY LAB

Course Code: MB 543
Total Number of Credits: 01

1. Bioassay of nicotinic acid
2. Production of Ethanol by Yeast.
3. Isolation of amylase producing microorganisms from soil
4. Isolation of protease producing microorganisms from soil
5. Isolation of lipase producing microorganisms from soil
6. Production and extraction of thuricides.
7. Laboratory scale production of biofertilizers.
8. Production, quantification and extraction of Citric acid
10. Demonstration: Down-stream Processing Lab
11. Determination of the specific growth rate a bacterium in submerged fermentations.
12. Production of wine from grape juice.
13. Preparation of fermented food products-curd, cheese and alcohols.

ENVIRONMENTAL MICROBIOLOGY LAB

Course Code: MB 544
Total Number of Credits: 01

1. Isolation and Identification of Symbiotic Nitrogen-fixing bacteria from soil.
2. Splash liberation of fungal spores from diseased tissue.
4. Estimation of total phenols in healthy and diseased plant tissues.
5. Degradation of cellulose by cellulolytic fungi (Chaetomium species).
6. Associative and Antagonistic relationships among soil microorganisms.
7. Microbial management of organic wastes.
8. Degradation of oil by microorganisms
9. Isolation of hydrocarbon and heavy metal tolerant microorganisms
10. Production and analysis of Poly Hydroxy butyrate (PHB)
MICROBIAL GENOMICS LAB

Course Code: MB 545
Total Number of Credits: 01

1. Isolation HMW DNA
2. DNA Cloning and Expression in *E. coli* cells
3. End repairing and cloning in fosmid/BAC
4. Restriction analysis
5. Polymerase chain reaction-Gradient
6. RT-PCR (demo)
7. 2-D gel electrophoresis (demo)
8. 16S typing
9. Mega software
10. Entrez Human genome map viewer
Project/Dissertation

Course Code: MB 599
Total Number of Credits: 6
Annexure

Equipment Essential for M.Sc., Microbiology Practical course

1. Electronic Balance
2. Autoclave
3. Hot air oven
4. Laminar air flow
5. Refrigerator
6. Distillation unit
7. CO₂ Incubator
8. Incubator
9. Microscopes (Light, Zoom-stereo, fluorescent and photographic)
10. Spectrophotometer
11. Centrifuge
12. Gel Electrophoresis
13. Water Bath
14. Table top centrifuge
15. Shaker Incubator
16. Thermal cycler (PCR)
17. Fluorescent Microscope
18. Refrigerated water bath
19. Milli Q System
20. Orbital Incubator Shaker
21. Micro balance
22. Refrigerated Centrifuge
23. Gel Documentation System
24. Fermentor
25. Electrophoresis Units
26. Inverted Microscope
27. Ice-making machine
28. Lyophilizer
29. Sonicator
30. Vacuum concentrator
31. Inverted Microscope