SYLLABUS FOR M.Sc STATISTICS
(CBCS Pattern)
Effective from the Academic Year 2014-2015
Aim of the Course

The Degree of Master of Science in Statistics aims to train the students in the development and applications of Statistical techniques for analyzing data arising in the scientific investigation of problems in the various disciplines. It is also proposed to provide first hand practical experience in handling modern statistical softwares in the analysis of such data.

Eligibility for admission

Candidates for admission to the first year of the M.Sc. (Statistics) degree programme shall be required to have passed the B.Sc. degree examination of any Indian University recognized by the University Grants Commission with Statistics as the main subject or Mathematics as the main subject with Mathematical Statistics as one of the minor subject and a minimum of 55% marks in the main and allied subjects.

Duration of the Course

The course shall be of two years duration spread over four semesters. The maximum duration to complete the course shall not be more than 8 semesters.

Eligibility for admission to Examination

A candidate shall be permitted to appear for the M.Sc. examination in a subject of study only if he/she secures not less than 70% attendance in the subject concerned.

Medium

The medium of instruction shall be English.

Passing Minimum

As per the Choice Based Credit System regulations of the Pondicherry University.
M.Sc. (STATISTICS) – COURSE STRUCTURE
(With effect from 2014-15 onwards)

Objectives
The present course is intended to provide a platform for talented students to undergo higher
studies in the subject as well as to train them to suit the needs of the society. Apart from
teaching core Statistics subjects, the students are also trained to handle real life problems
through practical classes. As part of the course, the students are taught some programming
languages and also trained in various statistical softwares such as SPSS, SYSTAT, R language.

Eligibility
B.Sc. degree in Statistics or Mathematics with Mathematical Statistics as a minor subject with
a minimum 55% of marks.

Duration of the Course
The course duration shall normally be of two years duration spread over four semesters.

Medium
The medium of instruction shall be English.

Choice Based Credit System (CBCS)
The M.Sc. Statistics program is offered through a unique CBCS. The salient feature of the
CBCS is that the program is offered through credit based courses. Subjects are divided into
Hard Core and Soft Core. Hard Core subjects are compulsory. The students have the choice to
select from among the list of soft core subjects. Soft core subjects are similar to elective
subjects.

A student is expected to complete a minimum of 72 credits within four semesters. Students
are assessed and awarded letter grades based on their performances in the respective courses.

Weightage of marks
The weightage of marks for Continuous Internal Assessment (CIA) and end semester
examinations shall be 40 and 60 respectively. A student is declared passed in a given subject
when he/she secures
 (a) a minimum of 40% in the end semester examination and
 (b) a minimum of 50% marks in aggregate when Internal Assessment and End-Semester
 marks are added

Continuous Internal Assessment
The weightage of 40 marks for Continuous Internal Assessment component shall consist of the
following:
a) Internal Assessment Tests (two) (2 x 15) = 30 marks
b) Seminars/Assignments/Presentations/Viva etc. (1 x 10) = 10 marks
 Internal Total = 40 marks

Supplementary Exam
(a) A failed student who meets the attendance requirement (70%) and has a minimum of
 40% in the Internal Assessment marks may be permitted to register for the next End
 Semester examination in the following semester itself
(b) Students who have failed due to insufficient attendance and / or less than 40% in
 the Internal Assessment marks should repeat the course as and when it is offered.
<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>COURSE CODE</th>
<th>TITLE OF THE COURSE</th>
<th>NATURE OF THE COURSE</th>
<th>NO. OF CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STAT 411</td>
<td>Linear Algebra and Matrix Theory</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 412</td>
<td>Probability Theory</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 413</td>
<td>Statistical Quality Control</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 414</td>
<td>Distribution Theory</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 415</td>
<td>Programming in R</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>STAT 421</td>
<td>Theory of Estimation</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 422</td>
<td>Sampling Theory</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 423</td>
<td>Stochastic Processes</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 424</td>
<td>Statistical Laboratory - I (Based on STAT 421 and STAT 422)</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soft Core</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>STAT 531</td>
<td>Multivariate Statistical Analysis</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 532</td>
<td>Testing of Statistical Hypotheses</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 533</td>
<td>Linear Models and Regression Analysis</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 534</td>
<td>Statistical Laboratory - II (Based on STAT 531 and STAT 532)</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soft Core</td>
<td>3</td>
</tr>
<tr>
<td>IV</td>
<td>STAT 541</td>
<td>Design and Analysis of Experiments</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 542</td>
<td>Statistical Laboratory - III (Based on STAT 541)</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soft Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soft Core</td>
<td>3</td>
</tr>
</tbody>
</table>

Soft Core Papers

<table>
<thead>
<tr>
<th></th>
<th>Semester II</th>
<th>Semester III</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 425</td>
<td>Biostatistics</td>
<td>STAT 535</td>
</tr>
<tr>
<td>STAT 426</td>
<td>Decision Theory</td>
<td>STAT 536</td>
</tr>
<tr>
<td>STAT 427</td>
<td>Econometrics</td>
<td>STAT 537</td>
</tr>
<tr>
<td>STAT 428</td>
<td>Demographic Techniques</td>
<td>STAT 538</td>
</tr>
<tr>
<td>STAT 429</td>
<td>Total Quality Management</td>
<td>STAT 539</td>
</tr>
</tbody>
</table>

Semester IV

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 543</td>
<td>Project and Viva-Voce/ Dissertation</td>
</tr>
<tr>
<td>STAT 544</td>
<td>Survival Analysis</td>
</tr>
<tr>
<td>STAT 545</td>
<td>Advanced Operations Research</td>
</tr>
<tr>
<td>STAT 546</td>
<td>Statistical Data Mining Methods</td>
</tr>
<tr>
<td>STAT 547</td>
<td>Bayesian Inference</td>
</tr>
<tr>
<td>STAT 548</td>
<td>Data Analysis with SPSS</td>
</tr>
</tbody>
</table>
Unit I
Vector Spaces, Sub-spaces, Basis of a vector space – Vector spaces with inner products - Gram-Schmidt orthogonalization.

Unit II
Linear transformation (LT) – Properties – Matrix of a linear transformation – Matrix of composite transformation – Matrix of an inverse transformation – Change of basis - Orthogonal transformation - Dual space.

Unit III
Linear equations – Solution space and null space – Sylvester’s law of nullity – Generalized inverse of a matrix – Moore – Penrose inverse

Unit IV
Eigen values and eigen vectors of an LT – left eigen vectors, right eigen vectors, Diagonalizable LT – Lambda matrix, Composition of lambda matrices, Operator polynomial, Cayley-Hamilton theorem and minimal polynomial for an LT – Eigen values of matrix polynomials.

Unit V
Bilinear forms - Canonical reduction – Sylvester’s law of inertia - Definitions of quadratic form - Lagrange’s reduction – Kronecker’s reduction - Reduction involving the eigen values of the matrix, Generalized eigen value problem.

Text books:
4. B.P.Parashar (1989), Linear Algebra, CBS Publishers and Distributors, Delhi

Reference Books:
2. Seymour Lipschutz and Marc Lipson (2003), Schaum’s Easy Outline of Linear Algebra, Tata Mc Graw Hill
4. Rao, A.R.and Bhimasankaran: Linear Algebra TMH.
Unit I

Unit II

Unit III
Convergence of a sequence of random variables - convergence in distribution, convergence in probability, almost sure convergence and convergence in quadratic mean - Weak and Complete convergence of distribution functions – Helly-Bray theorem.

Unit IV

Unit V

Text Books

Reference Books
Unit I
Definition of Quality – Dimension of quality – Quality problem - Quality improvement – Basis of Control charts – Attributes Control Chart – p-chart, d-chart, c-chart – Interpretation of control charts

Unit II
Control chart for variables - and R charts, and S charts - Modified control charts for mean – CUSUM chart – technique of V-mask – Weighted Moving average charts – Slopping control charts and group control charts

Unit III
Process Capability analysis: Meaning, Estimation technique for capability of a process – Capability Indices: Process capability ratios C_p, C_{pk}, C_{pm}, C_{mk}, C_{pc} – Process capability analysis using a control chart – Process capability analysis using design of experiments, Gage and measurement system capability studies

Unit IV
Acceptance sampling – Terminologies – Attribute sampling plan by attributes – Single sampling plan and Double sampling plan – OC, ASN, AOQ, AOQL and ATI curves – MILSTD -105E Tables

Unit V
Acceptance sampling variables for process parameter – Sequential plans for process parameter (σ known and unknown) – Sampling variables for proportion non-conforming - method, K method – Double specification limits – M-method, Double sampling by variables - MILSTD -414 Tables – Continuous Sampling plan – CSP-1, CSP-2, CSP-3

Text Books

Reference Books
Unit I
Brief review of distribution theory, distribution of functions of random variables - Laplace, Cauchy, Inverse Gaussian, Lognormal, Logarithmic series and Power series distributions - Multinomial distribution

Unit II
Bivariate Binomial – Bivariate Poisson – Bivariate Normal- Bivariate Exponential of Marshall and Olkin - Compound, truncated and mixture of distributions, Concept of convolution

Unit III
Multivariate normal distribution (Definition and Concept only) - Sampling distributions: Non-central chi-square, t and F distributions and their properties - Distributions of quadratic forms under normality-independence of quadratic form and a linear form - Cochran’s theorem

Unit IV
Order statistics, their distributions and properties- Joint and marginal distributions of order statistics - Distribution of range and mid range - Extreme values and their asymptotic distributions (concepts only)

Unit V

Text Books

Reference Books
Unit I
R language Essentials: Expressions and objects, Assignments, creating vectors, vectorized arithmetic, creating matrices, operations on matrices, lists, data frames – creation, indexing, sorting and conditional selection; examples.

Unit II
R Programming: conditional statements - if and if else; loops - for, while, do-while; functions – built-in and user defined; Data entry – reading from text file, data editor; examples.

Unit III
Descriptive Statistics and Graphics: Obtaining summary statistics; generating tables; Bar plots, Pie charts, Box plots, Histogram; exercises.

Unit IV
Probability and Distributions: Random sampling and combinatory; obtaining density, cumulative density and quantile values for discrete and continuous distributions; generating samples from discrete and continuous distributions; Plotting density and cumulative density curves; Q-Q plot.

Unit V
Correlation: Pearson, Spearman and Kendall’s correlation; Regression – fitting, obtaining residuals and fitted values; one and two sample tests for mean and variance – one way and two way ANOVA.

Text Books

Lab Exercises:
1. Operations on vectors and matrices
2. Creating and manipulating data frames.
3. Writing user defined functions for finding arithmetic mean, median, factorial, matrix addition and multiplication.
4. Bar and Pie charts.
5. Box plots for single and multiple groups.
6. Density and cumulative density plots for Binomial, Poisson, Normal and exponential distributions.
7. Checking Normality using Histogram and Q-Q plot.
8. Correlation coefficient – Pearson’s, Spearman and Kendall’s Tau.
10. One sample and two sample t test.
11. One way and two way ANOVA.
Unit I
Parametric point estimation – properties of estimators – Consistency and its different forms
Sufficient condition for consistency- Unbiasedness – sufficient statistics – Factorization theorem - Distributions admitting sufficient statistic – Exponential and Pitman families procedure for finding minimal sufficient statistic.

Unit II
The information measure – Cramer - Rao (CR) inequality - Chapman - Robbins (KCR) inequality (single parameter case only) - Bhattacharya inequality (single parameter case only) - minimum variance bound estimator- Invariant (equivariant) estimators (concepts only)

Unit III
Uniformly minimum variance unbiased estimators (UMVUE)- condition for the existence of UMVUE- Completeness and Bounded completeness- Relation between complete statistic and minimal sufficient statistic- Rao - Blackwell Theorem- Lehmann – Scheffe’s theorem.

Unit IV

Unit V

Text Books

Reference Books
STAT 422 – SAMPLING THEORY

CREDITS: 4

Unit I

Unit II
Probability Proportional to size sampling- Inclusion Probabilities – Horvitz-Thompson estimator – Yates –Grundy Form –Midzuno Sampling design - PPSWOR- Des-Raj’s Ordered estimator - Murty’s unordered estimators

Unit III

Unit IV
Cluster Sampling: Equal cluster sampling – Estimators of mean and variance, optimum cluster size, Unequal cluster sampling – Estimators of mean and variance, varying probability cluster sampling - Two stage sampling – variance of the estimated mean – Double Sampling for stratification and Ratio estimation

Unit V
Randomized response methods – Warner’s, Simmon’s and Two Stage response methods - Sources of errors in Surveys - Mathematical model for the effects of call-backs and the errors of measurement – Official Statistical Systems in India – Role of NSSO and CSO and their activities – Organization of Large Scale Sample Surveys.

Books for Study

Reference Books
Unit I

Unit II
Markov chains continuous in time – General pure birth processes and Poisson process, birth and death processes, finite state continuous time Markov chains.

Unit III
Branching processes discrete in time – Generating functions relations – Mean and variance – Extinction probabilities – Concept of Age dependent Branching process

Unit IV
Renewal processes – Definition and examples – key renewal theorem – Study of residual life time process

Unit V
Stationary process – weakly and strongly stationary process – Moving average and Autoregressive processes and their covariance functions - Brownian Motion process – Joint probabilities for Brownian motion process – Brownian motion as a limit of random walk

Text Books

Reference Books
I. Estimation (30 marks)

1. MLE and Standard error of ML estimators.
2. MLE through the method of successive approximation.
3. MLE for truncated distribution.
4. Method of Moments
5. Method of Minimum Chi-square
6. Method of Least square
7. Interval estimation: Confidence interval for mean, difference of means and ratio of variances.

II. Sampling Theory (30 marks)

2. Ratio, Regression and Difference estimation.
3. Stratified sampling – SRS- Equal, Proportional, Neyman and Optimum allocations
4. Linear and circular systematic sampling
5. PPSWR – Hurwitz Thompson estimator - Des Raj ordered estimator – Murthy’s unordered estimator – Midzuno-Sen scheme.
6. Cluster sampling of equal sizes.
Unit I
Multivariate normal distribution— Marginal and conditional distributions – characteristic function. Maximum likelihood estimation of the parameters of Multivariate Normal and their sampling distributions – Inference concerning the mean vector when covariance matrix is known

Unit II
Total, Partial, Multiple correlation in the Multivariate setup – MLEs of Total, Partial and Multiple correlation coefficients. Sampling distributions of Total and Multiple Correlation in the null case. Hotelling T^2 statistic, derivation and its distribution - Uses of T^2 statistic - relation between T^2 and D^2 - Mahalanobis D^2 statistic and its distribution

Unit III
Generalized variance - Wishart distribution (statement only) – Properties of Wishart distribution - Test for covariance matrix – Test for equality of covariance matrices

Unit IV
Classification problems - Classification into one of two populations (known and unknown dispersion matrix) - Classification in to one of several populations – Fisher’s Linear discriminant function

Unit V

Text Books

Reference Books
STAT 532 – TESTING OF STATISTICAL HYPOTHESES

CREDITS: 4

Unit I
Randomized and non-randomized tests, Neyman – Pearson fundamental lemma, Most powerful tests, Uniformly most powerful test, Uniformly most powerful test for distributions with monotone likelihood ratio, Generalization of fundamental lemma and its applications

Unit II
Unbiasedness for hypothesis testing, Uniformly most powerful unbiased tests, Unbiased tests for one parameter exponential family, Similar test and complete sufficient statistics, Similar tests with Neyman structure, Locally most powerful tests.

Unit III
Invariant tests, maximal invariants, Uniformly most powerful invariant tests, Consistent tests, Likelihood ratio test, its properties and its asymptotic distribution, Applications of the LR method.

Unit IV
Non-parametric tests: Goodness of fit test : Chi-square and Kolmogorov Smirnov test - Test for randomness, Wilcoxon Signed rank test – Two sample problem: Kolmogrov-Smirnov test, Wald-Wolfowitz run test, Mann-Whitney U test, Median test

Unit V
Sequential tests: Basic Structure of Sequential tests – Sequential Probability Ratio Test (SPRT) and its applications – Determination of the boundary constants – Operating Characteristic and expected sample size of SPRT - Optimum properties of SPRT.

Text Books

Reference Books
Unit I
Full rank linear model – least square estimators of the parameters and their properties – Gauss-Markov theorem - Model in centered form – Estimators under normality assumption and their properties – Coefficient of determination – Generalized least squares – misspecification of the error structure and the model.

Unit II
Test for overall regression and for a subset of the parameters – test in terms of R^2 – General Linear Hypothesis testing – special cases – confidence region for the parameters and the mean – prediction intervals – likelihood ratio tests for the parameters – study of the residual outliers and influential observations

Unit III
Selection of input variables and model selection – Methods of obtaining the best fit - Stepwise regression, Forward selection and backward elimination – Multicollinearity – Collinearity diagnostics – Causes, Consequences and Remedy – Departure from normality

Unit IV
Introduction to general non-linear regression – Least squares in non-linear case – Estimating the parameters of a non-linear system – Reparametrisation of the model – Non-linear growth models – Concept of non-parametric regression

Unit V
Robust regression – Linear absolute deviation regression – M estimators – Robust regression with rank residuals – Resampling procedures for regression models – methods and its properties (without proof) - Jackknife techniques and least squares approach based on M-estimators.

Text Books

Reference Books
I Multivariate Statistical Analysis (30 marks)

1. Test for Mean vector when dispersion matrix in known (Single and Two sample)
2. Hotelling T^2 test (One and two sample)
3. Test for covariance matrices
4. Discriminant Analysis
5. One way MANOVA
6. Principal Component Analysis
7. Canonical Correlation Analysis

II Testing of hypothesis (30 marks)

1. Construction of randomized and nonrandomized MP, UMP and UMPU tests of hypotheses and drawing the power curves.
2. Non parametric tests: Kolmogorov Smirnov test, Mann-Whitney U test, Median test for k-sample problem, Kruskal Wallis test and Friedman’s test
Unit I
Notion of design matrix- general analysis of design models (Inter and Intra Block analysis) – C Matrix and its properties – Expected Mean Squares (EMS) and its uses- Algorithm for calculating EMS - Two way elimination of heterogeneity – Orthogonality – Connectedness and resolvability

Unit II
Principles of scientific experimentation – Basic Design: Completely Randomized Design (CRD), Randomized Block Design (RBD) and Latin Square Design (LSD) - Analysis of RBD (with one observation per cell, more than one but equal number of observations per cell) – Derivation of one and two missing values: Iterative and non-iterative methods – Loss of Efficiency due to missing values- Multiple comparison test: Least Significant Difference, Student Newman Kuel , Duncan’s Multiple Range, Tukey tests.

Unit III
Factorial experiments: 2^n and 3^n experiments and their analysis – Complete and Partial Confounding - Fractional Replication in Factorial Experiments – Split plot and strip plot design and their analysis.

Unit IV
Balanced Incomplete Block Design (BIBD) - Types of BIBD - Simple construction methods - Concept of connectedness and balancing – Intra Block analysis of BIBD – Recovery of Inter Block information – Partially Balanced Incomplete Block Design with two associate classes – intra block analysis only.

Unit V
Youden square and lattice design and their analysis – Analysis of Covariance with one concomitant variable in CRD and RBD only

Text Books
2. Douglas C. Montgomery (2009) : Design and Analysis of Experiments, 7/e, John Wiley and Sons, (Chapter 16 for Parts of Unit IV and Unit V)

Reference Books
I. Design of Experiments (60 marks)

1. Multiple Comparison tests- Fisher LSD, Tukey, DMR and SNK
2. 2^4, 3^2, 3^3 factorial experiment
3. Complete and partial confounding in 2^4, 3^2, 3^3 factorial experiments
4. Fractional factorial
5. Split plot design and Strip plot design
6. Missing data analysis- one and two missing values in RBD and LSD
7. Balanced Incomplete Block Design- Intra Block analysis
8. Partially Balanced Incomplete Block Design with two associate classes- Intra Block analysis
9. Youden Square Design
10. Analysis of Covariance – CRD and RBD
Unit I
Statistical Methods in Clinical Trials: Introduction to clinical trial and its phases I, II, III and IV, statistical designs-fixed sample trials: simple randomized design, stratified randomized crossover design; Sequential design - open and close sequential design. Randomization-Dynamic randomization, Permuted block randomization; Blinding-Single, double and triple.

Unit II

Unit III
Data editing and transformations: Transformation in general - logarithmic, square root and power transformations; transformations for proportions – angular, probit and logit transformations. Outlying observations – box plot, M-estimators. Test for normality - p-p plot and q-q plot and Kolmogorov-Smirnov test.

Unit IV
Categorical Data Analysis: Categorical response data, logistic regression-odds ratio, Wald’s statistic, logistic regression and its diagnostics, ROC Curve analysis - Estimation of Binormal Model and the Area under the Curve, its applications, poison regression and its applications.

Unit V
Repeated Measures ANOVA – One Way and Two Classified Data – Measures of disease frequency – incidence – prevalence – relative risk – Epidemiological study designs – Cohort study design and its analysis – Case control study design and its analysis – concept of bias – information bias and selection bias

Text Books

Reference Books
Unit I
Basic elements of a decision problem - Randomized and non-randomized decision rules - Estimation and testing of hypothesis as decision problems - Bayes approach to inference and decision -

Unit II
Loss functions - Prior and Posterior distributions - Prior-Posterior analysis for Bernoulli, Poisson, and normal processes - Decision principles and Baye’s risk

Unit III
Utility theory - axioms, construction of utility functions, sufficiency, equivalence of classical and Bayesian sufficiency, complete and essentially complete classes of decision rules

Unit IV
Minimax analysis - Basic elements of game theory - General techniques of solving games - Finite games - Supporting and separating hyperplane theorems - Minimax theorem - Minimax estimation for normal and Poisson means

Unit V
Admissibility of Bayes and minimax rules, General theorems on admissibility, Robustness of Bayes rules, Invariant decision rules, Location parameter problems, Confidence and credible sets.

Text Books:

Reference Books:
1. Zellener (1971): An Introduction to Bayesian Inference in Econometrics, Willey
Unit I
Nature and Scope of Econometrics - Review of General Linear Model (GLM), Ordinary Least Squares (OLS), Generalized Least Squares (GLS) and Multicollinearity

Unit II
Heteroscedasticity - Autocorrelation, its consequences and tests - Ridge regression - Linear regression with stochastic regressors - Instrumental variable estimation - Errors in variables - Autoregressive linear regression - Distributed lag models.

Unit III
Simultaneous linear equations model - Identification problem - Restrictions on structural parameters - rank and order conditions - Restrictions on variances and covariances - Estimation in simultaneous equations model

Unit IV
Forecasting - Univariate forecasting methods - Forecasting in regression models - Forecasting with Simultaneous equations model - Evaluation of forecasts - Combination of forecasts

Unit V
Definition of causality - Granger causality - testing of causality - Cointegration, Bivariate cointegration tests - multivariate cointegration.

Text Books:

Reference Books:
STAT 428 - DEMOGRAPHIC TECHNIQUES CREDITS: 3

Unit I

Unit II
Life tables: Construction of a life table, Graphs of \(l_x \), \(q_x \), \(d_x \), Functions \(L_x \), \(T_x \), and \(E_x \). Abridged life tables Mortality: Rates and Ratios, Infant mortality, Maternal mortality, Expected number of deaths, Direct and Indirect Standardization, Compound analysis, Morbidity.

Unit III
Fertility: Measures of Fertility, Reproductively formulae, Rates of natural increase, Fertility Schedules, Differential fertility, Stable Populations, Calculation of the age distribution of a stable population, Model Stable Populations.

Unit IV

Unit V
Ageing of the population, Estimation of demographic measures from incomplete data.

Text Books:

Reference Books:
Unit I
Need for TQM, evolution of quality, Definition of quality, TQM philosophy – Contributions of Deming, Juran, Crosby, Taguchi and Ishikawa.

Unit II
Vision, Mission, Quality policy and objective, Planning and Organization for quality, Quality policy Deployment, Quality function deployment, Analysis of Quality Costs.

Unit III

Unit IV
PDSA, The Seven QC Tools of Quality, New Seven management tools, Concept of six sigma, FMEA, Bench Marking, JIT, POKA YOKE, 5S, KAIZEN, Quality circles.

Unit V

Text Books

Reference Books
SEMMESTER III

STAT 535 – RELIABILITY THEORY

Unit I
Introduction to Reliability and its needs; Structural properties of coherent system: components and systems, coherent structures, representation of coherent systems in terms of paths and cuts, relevant & irrelevant structure; Modules of coherent systems; Reliability of a coherent systems; Reliability importance of components; Bounds on System Reliability.

Unit II
Life Distributions: Concept of distribution function, hazard function, Reliability function, MTTF, Bathtub failure rate; loss of memory property of Exponential distribution - parametric families of some common life distributions – Exponential, Weibull and Gamma and its characterization - Reliability estimation of parameters in these models.

Unit III
Notions of Ageing; Classes of life distributions and their duals - preservation of life distribution classes for reliability operation - Formation of coherent systems, convolutions and mixtures.

Unit IV
Univariate stock models and life distributions arising out of them: cumulative damage model, shock models leading to univariate IFR, Successive shock model; bivariate shock models; common bivariate exponential distributions due to shock and their properties. Maintenance and replacement policies; availability of repairable systems; modeling of a repairable system by a non-homogeneous Poisson process.

Unit V
Stress-Strength reliability - Concepts and its estimation; Reliability growth models; probability plotting techniques; Hollander –Proschan and Deshpande tests for exponentiality – Basic ideas of accelerated life testing.

Text Books:

Reference Books:
STAT 536 - TIME SERIES ANALYSIS
CREDITS: 3

Unit I
Exploratory Time Series Analysis: Forecasting trend and seasonality based on smoothing. Methods of Exponential and moving average smoothing; Types and implications of interventions; Outliers, additive and innovational outliers, procedure for detecting outliers

Unit II
Stationary Stochastic models: weak and strong stationarity, Deseasonalising and detrending an observed time series, Auto-covariance, autocorrelation function (ACF), partial autocorrelation function (PACF) and their properties, Conditions for stationarity and invertibility,

Unit III
Models for Time Series: Time series data, Trend, seasonality, cycles and residuals, Stationary, White noise processes, Autoregressive (AR), Moving Average (MA), Autoregressive and Moving Average (ARMA) and Autoregressive Integrated Moving Average (ARIMA) processes, Choice of AR and MA periods

Unit IV
Spectral analysis and decomposition: Spectral analysis of weakly stationary process, Periodogram and correlogram analysis, Spectral decomposition of weakly AR process and representation as a one-sided MA process – necessary and sufficient conditions, implication in prediction problems.

Unit V
Modeling Seasonal Time Series: seasonal ARIMA models, estimation and forecasting, Fitting ARIMA models with Box-Jenkins procedure, Identification, Estimation, Verification, Test for white noise, Forecasting with ARMA models.

Text Books:

Reference Books:
Unit I
Basic deterministic model: Cash flows, discount function, interest and discount rates, balances and reserves, internal rate of return, The life table: Basic definitions, probabilities, construction of life tables, life expectancy, Life annuities: Introduction, calculating annuity premium, interest and survivorship discount function, guaranteed payments, deferred annuities.

Unit II
Life insurance: Introduction, calculation of life insurance premiums, types of life insurance, combined benefits, insurances viewed as annuities, Insurance and annuity reserves: The general pattern reserves, recursion, detailed analysis of an insurance, bases for reserves, non forfeiture values, policies involving a return of the reserve, premium difference and paid-up formula.

Unit III
Fractional durations: Life annuities paid monthly, immediate annuities, fractional period premium and reserves, reserves at fractional durations, Continuous payments: Continuous annuities, force of discount, force of mortality, Insurance payable at the moment of death, premiums and reserves. The general insurance – annuity identity, Select morality: Select an ultimate tables, Changed in formulas.

Unit IV
Multiple life contracts: Joint life status, joint annuities and insurances, last survivor annuities and insurances, moment of death insurances. The general two life annuity and insurance contracts, contingent insurances

Unit V
Multiple decrement theory: Basic model, insurances, Determination of the models from the forces of decrement. Stochastic approach to insurance and annuities; Stochastic approach to insurance and annuity benefits, deferred contracts, Stochastic approach to reserves and premiums, variance formula.

Text Books

Reference Books
Unit I
Introduction, need of simulation, physical versus digital simulation, Buffers needle problem, Use of simulation in defence, inventory problems and other fields.

Unit II
Random number generation: Congruential generators, Metropolis Hasting algorithm, Statistical tests for pseudo random numbers. Random number generation from mixture of distributions, compound distributions.

Unit III

Unit IV
Monte Carlo integration and variance reduction techniques. Hit or Miss Monte Carlo Method, Sample mean Monte Carlo method.

Unit V

Text Books

Reference Books
STAT 539 - ELEMENTS OF QUEUEING THEORY
CREDITS: 3

Unit I

Unit II
Poisson Queuing Models with single server: Descriptions of the model, Assumptions, Probability distributions for number of Units (steady state), waiting time distribution, Derivation of characteristics on (M/M/1): (∞/FIFO) and (M/M/1): (N/FIFO) Models, simple numerical problems

Unit III
Poisson Queuing Models with multiple server: Descriptions of the model, Assumptions, Probability distributions for number of Units (steady state), waiting time distribution, Derivation of characteristics on (M/M/C): (∞/FIFO), (M/M/C): (N/FIFO) and (M/M/C): (C/FIFO) Models, simple numerical problems

Unit IV
Non Poison Queuing Models (Erlangian): Descriptions of the model, Assumptions, Probability distributions for number of Units (steady state), waiting time distribution, Derivation of characteristics on (M/Ek/1), (Ek/M/1), simple numerical problems

Unit V
General Queuing Models: Descriptions of the model, Assumptions, Probability distributions for number of Units (steady state), waiting time distribution, Derivation of characteristics on (M/G/1), (G/M/1), Simple numerical problems

Text Books

Reference Books
4. J.Medhi (2009), Stochastic Processes, 3/e, New Age International
SEMESTER - IV

STAT 543 – PROJECT AND VIVA-VOCE/DISSERTATION CREDITS: 3

1. A project work is compulsory and shall be offered in semester IV. It will have 4 credits.
2. A project work may be taken individually or by a group of two students.
3. Project work shall be supervised by a faculty member assigned by the Head of the Department in the beginning of the semester.
4. The project work should be selected in such a way that there is enough scope to apply and demonstrate the statistical techniques learnt in the course.
5. At the end of the semester, a report on the work done should be submitted (two copies). If a team of two students jointly do a project work then they must submit individual reports separately (not copy of the same report).
6. The project report shall clearly state the selected problem, the statistical methodologies employed for data collection and analysis and the conclusions arrived at. Details of previous studies in the area and related references should also be given.
7. The project work will be assessed for a maximum of 100 marks. Each student will give a seminar before the end of the semester on their project work which will be evaluated internally for a maximum of 40 marks. There will be an external viva-voce examination for a maximum of 10 marks by an internal and an external examiner. The project report will be valued by the same external and internal examiner for a maximum of 50 marks.
Unit I
Concepts of time, order and random censoring and likelihood in these cases - Life
distributions – Exponential, Gamma, Weibull, Lognormal, Pareto, Linear Failure rate
Parametric inference (Point estimation, Scores, MLE)

Unit II
Life tables, failure rate, mean residual life and their elementary properties - Ageing
classes and their properties - Bathtub Failure rate

Unit III
Estimation of survival function – Actuarial Estimator - Kaplan- Meier Estimator -
Estimation under the assumption of IFR / DFR - Tests of exponentiality against non-
parametric classes – Total time on test, Deshpande test

Unit IV
Two sample problem: Gehan test, Log rank test. Mantel –Haenszel test, Tarone – Ware tests.
Semi- parametric regression for failure rate – Cox’s proportional hazards model with one and
several convariates - Rank test for the regression coefficients

Unit V
Competing risks model - parametric and non- parametric inference for this model - Multiple
decrement life table

Text Books
 York.
 Survival Data Analysis, 3/e, Wiley InterScience
 Truncated Data, 2/e, Springer.

Reference Books
 Biomedical Sciences, John Wiley and Sons.
 Wiley and sons.
 John Wiley.
 & Sons.
Unit I
(Review of Linear Programming Problem (LPP) – Simplex, Big M and Two Phase methods) - Revised simplex method - Duality in LPP – Dual Simplex method – Some important theorems on duality - Sensitivity Analysis – Variation in cost vector and requirement vector – Addition and deletion of single variable and single constraint

Unit II
Integer Programming Problem (IPP) - Gomory’s cutting plane algorithm – Mixed IPP – Branch and Bound technique - Dynamic programming problem (DPP) - Bellman’s principle of optimality - General formulation - computation methods and application of DPP - Solving LPP through DPP approach

Unit III
Inventory models – Deterministic inventory models – Classic EOQ model – EOQ with price breaks – EOQ with storage limitations – Probabilistic Inventory models – Continuous review model – Single period model - No setup model – setup model (s-S policy)

Unit IV
Non-linear programming problem – Kuhn Tucker conditions – Quadratic Programming Problem (QPP) - Wolfe’s and Beale’s algorithms for solving QPP – Convex programming

Unit V
Queuing theory – Basic characteristics of queuing models – Arrival and service distribution – steady state solution of M/M/1 and M/M/C models with associated distribution of queue length and waiting time - M/G/1 queue-steady results using embedded Markov chain Methods - Pollazcek Khinchin formula.

Text Books

Reference Books
Unit I

Unit II

Unit III
Nearest Neighbor classifiers – kNN algorithm – Naïve Bayesian classifier – Binary logistic regression – odds ratio – Interpreting logistic regression coefficients – Multiple logistic regression

Unit IV

Unit V
Case studies based on k means clustering, fuzzy c means clustering, kNN classification, Binary logistic regression using R programming language or Excel Miner.

Text Books
1. Tan, T., Steinbach, M. and Kumar, V. (2006): Introduction to Data Mining, Pearson Education. (relevant portions of Chapters 1, 2, 4, 5 and 8).

Reference Books
Unit I
Subjective Interpretation of probability in terms of fair odds - Evaluation of Subjective probability of an event using a subjectively unbiased coin - Subjective prior distribution of a parameter - Bayes theorem and computation of the posterior distribution

Unit II
Natural Conjugate family of priors for a model - Hyper parameters of a prior from conjugate family - Conjugate families for exponential family models - models admitting sufficient statistics of fixed dimension - Enlarging the natural conjugate family by enlarging hyper parameter space - mixtures from conjugate family - choosing an appropriate member of conjugate prior family - Non informative, improper and invariant priors - Jeffrey’s invariant prior

Unit III
Bayesian point estimation: Prediction problem from posterior distribution - Bayes estimators for absolute error loss, squared error loss and 0 -1 loss - Generalization to convex loss functions - Evaluation of the estimate in terms of the posterior risk - Bayesian interval estimation : Credible intervals - Highest posterior density regions - Interpretation of the confidence coefficient of an interval

Unit IV
Bayesian Testing of Hypothesis: Prior and Posterior odds - Bayes factor for various types of testing hypothesis problems - Lindley’s paradox for testing a point hypothesis for normal mean

Unit V
Bayesian prediction problem: Prediction for Exponential family of Distributions - Predictive Distributions and Reliability Estimation - Predictive Interval - Ideas on Bayesian Robustness, Monte-Carlo Integration and Markov chain Monte Carlo techniques (without proof)

Text Books

Reference Books
2. Selection of cases, splitting and merging of files.
5. Fitting of curves – Linear, parabola, cubic and exponential.
6. Testing of Hypothesis – t, F, Chi square,
7. One way and Two way ANOVA.
8. Hotelling’s T^2 test (Two sample)
9. Test for covariance matrix
10. Discriminant Analysis
11. One Way MANOVA.
12. Factor Analysis.
14. Fitting of Multiple linear regression - variable selection - diagnostics.
15. Residual Analysis for model adequacy, detection of outliers and influential observations
16. Multiple Comparison tests
17. 2^4, 3^2, 3^3 factorial experiment
18. Split plot design
SOFT CORE COURSE FOR OTHER DEPARTMENTS

STAT 416 - STATISTICAL METHODS

Credits: 3

Unit I

Unit II
Measures of central tendency – Mean, Median and Mode – Measures of dispersion – Range, Quartile deviation and Standard deviation – Coefficient of variation and skewness

Unit III

Unit IV
Elementary Probability theory: Addition theorem – Conditional probability and Multiplication theorem - Bayes’ Theorem – Random variables and probability distributions – Binomial, Poisson , Normal (simple applications of the distribution) – Sampling distributions: t, F and chi-square (definition only)

Unit V
Hypothesis testing: Basic concepts in Hypothesis Testing – Types of error – Tests for Mean and Proportion based on Normal and Student t-distribution - Chi-square test for independence of attributes – One-way and two-way Analysis of Variance

Text Books

Reference Books