SYLLABUS FOR M.Sc - STATISTICS
(CBCS – Five Year Integrated)
Effective from the Academic Year 2013-2014
PONDICHERRY UNIVERSITY

CHOICE BASED CREDIT SYSTEM

SYLLABUS FOR THE M.Sc. INTEGRATED STATISTICS COURSE

Effective from the Academic Year 2013 – 2014

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>COURSE CODE</th>
<th>TITLE OF THE COURSE</th>
<th>NATURE OF THE COURSE</th>
<th>NO. OF CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>STAT 111</td>
<td>Basic Statistics</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td>II</td>
<td>STAT 121</td>
<td>Basic Probability Theory</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>STAT 231</td>
<td>Probability Distributions</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 232</td>
<td>Introduction to Sampling Theory</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td>IV</td>
<td>STAT 241</td>
<td>Basic Estimation Theory</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 242</td>
<td>Practical – I</td>
<td>Hard Core</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>STAT 351</td>
<td>Elements of Testing Statistical Hypotheses</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 352</td>
<td>Statistical Quality Control and Operations Research</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 353</td>
<td>Practical – II</td>
<td>Hard Core</td>
<td>2</td>
</tr>
<tr>
<td>VI</td>
<td>STAT 361</td>
<td>Principles of Experimental Design</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 362</td>
<td>Applied Statistics</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 363</td>
<td>Practical – III</td>
<td>Hard Core</td>
<td>2</td>
</tr>
<tr>
<td>VII</td>
<td>STAT 411</td>
<td>Linear Algebra and Matrix Theory</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 412</td>
<td>Probability Theory</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 413</td>
<td>Sampling Theory</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 414</td>
<td>Distribution Theory</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 415</td>
<td>Statistical Laboratory – I (Based on STAT 413 and SYSTAT)</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td>VIII</td>
<td>STAT 421</td>
<td>Theory of Estimation</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 422</td>
<td>Statistical Quality Control and Total Quality Management</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 423</td>
<td>Stochastic Processes</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 424</td>
<td>Statistical Laboratory – II (Based on STAT 421, 422 and SPSS)</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soft Core</td>
<td>3</td>
</tr>
<tr>
<td>IX</td>
<td>STAT 531</td>
<td>Multivariate Statistical Analysis</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 532</td>
<td>Testing of Statistical Hypotheses</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 533</td>
<td>Linear Models and Regression Analysis</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 534</td>
<td>Statistical Laboratory – III (Based on STAT 531, 532, 533 and SPSS)</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soft Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 541</td>
<td>Design and Analysis of Experiments</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STAT 542</td>
<td>Statistical Laboratory – IV (Based on STAT 541 and R - language)</td>
<td>Hard Core</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>STAT 543</td>
<td>Project and Viva-Voce</td>
<td>Hard Core</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soft Core</td>
<td>3</td>
</tr>
</tbody>
</table>

Soft Core Papers

<table>
<thead>
<tr>
<th>Semester VIII</th>
<th>Semester IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 425</td>
<td>STAT 535</td>
</tr>
<tr>
<td>STAT 426</td>
<td>STAT 536</td>
</tr>
<tr>
<td>STAT 427</td>
<td>STAT 537</td>
</tr>
<tr>
<td>STAT 428</td>
<td>STAT 538</td>
</tr>
</tbody>
</table>

Semester X

STAT 544	Survival Analysis
STAT 545	Operations Research
STAT 546	Statistical Data Mining Methods
STAT 547	Demographic Techniques
STAT 111 - BASIC STATISTICS

UNIT I
Definition of statistics – Scope and limitations of statistics – Primary and Secondary data-
Collection and presentation of data – summarizing data – frequency distribution – Measures

UNIT II
Measures of dispersion – Range – Quartile deviation – Mean deviation - Standard deviation
– coefficient of variation – Moments about the origin and mean – Skewness, Kurtosis and
their measures.

UNIT III
Measures of association between attributes - coefficient of association and contingency;
Measures of relation between two variables – correlation and Rank correlation – Kendall’s
Tau - Simple problems

UNIT IV
Partial and Multiple correlation coefficients (three variables only) – regression – Curve fitting
by least squares – linear and quadratic

UNIT V
Present official statistical system in India relating to population, agriculture, Industrial
production, trade and prices - Methods of collecting official statistics, their reliability and
limitations - Principal publications containing such statistics - Official agencies responsible
for their collection and their functions.

Books for Study
 Sultan Chand and sons.

Books for Reference
 8/e, Thomson.
2. Guide to current Indian Official statistics – Central Statistical Organisation, Govt. of
 India.
Unit I
Events - Sample Space - Mathematical and Statistical definitions of Probability - Axiomatic definition of Probability –Addition and multiplication theorems - Conditional probability – Bayes’ Theorem - Simple problems.

Unit II
Random variables - Discrete and Continuous - Distribution function and its properties - Expectation - Chebychev's inequality - Cauchy - Schwartz inequality

Unit III
Moment Generating function - Probability Generating function - characteristic function, its properties and uses.

Unit IV
Concept of Bivariate distributions - conditional and marginal distributions -Notion of Independence of Random variables - Conditional Expectation - Simple problems

Unit V
Definition of convergence in probability and distributions - Weak Law of Large numbers (WLLN) - Central Limit theorem for i.i.d case (statement only)

Books for Study

Books for Reference
STAT 231- PROBABILITY DISTRIBUTIONS

Unit I
Discrete Distributions: Bernoulli, Binomial - Poisson - Geometric – Negative Binomial and Hypergeometric distributions and their characteristics.

Unit II
Continuous Distributions: Uniform - Exponential - Normal - Gamma - Beta distributions and their characteristics.

Unit III
Cauchy distribution - Laplace distribution - Bivariate Normal distribution - Conditional and marginal distributions

Unit IV
Definition of Sampling distributions and standard error - Sampling distributions: t, F and chi-square distributions - Interrelationship among t, F and chi-square distributions and their characteristics

Unit V
Concept of Order statistics - Distribution of the Order Statistics including that of maximum and minimum - Distribution of the sample Range and median

Books for Study

Books for Reference
Unit I
Concept of sampling - Need for sampling - population and sample - sampling unit and sample frame - Types of Population - Basic properties of population - sample survey and census - Principal steps in a Sample survey - Notion of sampling error.

Unit II
Simple Random Sampling with and without replacement - Estimation of Population mean and proportion and their variances- Determination of sample size.

Unit III
Stratified sampling - Principles of stratification - Estimation of population mean and its variance - Allocation techniques - Estimation of gain due to stratification

Unit IV
Systematic sampling - Estimation of population mean and its sampling variance - Circular systematic sampling - comparison of systematic, simple random and stratified random sampling - cluster sampling with equal sized clusters - estimation of population mean and variance.

Unit V
Large scale sample surveys - Sources of Non sampling errors and methods of controlling them - NSSO and CSO and their functions.

Books for Study

Books for Reference
Unit I
Basic problem of statistical Inference: Point estimation - Properties of estimators: Unbiasedness and consistency - Conditions for consistency – Sufficiency - Factorization theorem (without proof) – Simple problems

Unit II
Efficiency - Minimum Variance Unbiased Estimators (MVUE) and their properties - Cramer-Rao Inequality - Rao - Blackwell Theorem – Simple Problems

Unit III
Methods of Estimation: Methods of moments – Simple problems - Method of least squares – Method of minimum chi-square

Unit IV
Method of maximum likelihood estimation (MLE) – Properties of maximum likelihood estimators - Asymptotic properties of MLE (without proof) - Method of Scoring

Unit V
Confidence intervals: Basic Notions - Confidence Intervals for the mean, proportion, variance (for the case of one and two populations) and correlation coefficient - Large sample Confidence Intervals

Books for Study

Books for Reference
I. BASIC STATISTICS

1. Measures of Central Tendency and Dispersion
2. Moments, Skewness and Kurtosis
3. Fitting of straight line, second degree parabola
4. Simple correlation, regression, rank correlation
5. Partial and multiple correlation
6. Measures of association

II. SAMPLING THEORY

1. Use of random numbers and Simple random sampling
2. Stratified random sampling – Proportional allocation and Optimum allocation
3. Systematic sampling
4. Cluster sampling (equal size)

III. ESTIMATION

1. Method of Maximum Likelihood
2. Method of Moments
3. Confidence Intervals
STAT 351 - ELEMENTS OF TESTING STATISTICAL HYPOTHESES CREDITS: 3

Unit I
Concept of hypothesis testing - Types of errors and power - most powerful tests - Neyman-Pearson Fundamental Lemma and its applications - Notion of Uniformly most powerful tests

Unit II
Likelihood Ratio tests: Description and property of LR tests - Application to standard distributions - Large sample properties

Unit III
Tests of significance (under normality assumption): Test for single mean and proportion for small and large samples – Test for correlation and variance

Unit IV
Test for equality of means and variances of two population (large and small samples) – Test for equality of proportions – Chi-square test for goodness of fit and test for independence of attributes

Unit V
Non Parametric Tests: Sign test, Signed rank test, Median test, Mann-Whitney test, Run test and One sample Kolmogorov –Smirnov test (Description, properties and applications only)

Books for Study

Books for Reference
STAT 352 - STATISTICAL QUALITY CONTROL AND OPERATIONS RESEARCH

CREDITS: 3

Unit I
Need for SQC in industries; Process control: Chance and assignable causes of variation - specification and tolerance limits; process capability- Statistical basis for control charts: \bar{X}, R, p and c charts - their construction and analysis

Unit II
Product control: Acceptance sampling by attributes; Producer’s and Consumer’s risk-Notions of AQL, LTPD and AOQL - Single and double sampling plans: OC, AOQ, ASN and ATI Curves

Unit III
Linear Programming Problem - Graphical solution - Simplex method - Artificial variables Techniques – Big M-method and Two-Phase methods

Unit IV
Transportation Problem: Initial Basic Solution by North West Corner Rule, Least Cost and Vogel’s Approximation Methods – Optimal Solution by Modified Distribution (MODI) Method -Assignment problem - Simple Problems

Unit V
Network analysis by CPM / PERT: Basic concepts: Constructions of the network - concepts of slack and float in network analysis - Determination of the floats and critical path.

Books for Study

Books for Reference

I. STATISTICAL INFERENCES

1. Large Sample Tests: Means, Variances and Proportions
2. Tests based on Chi-square statistic: Population variance, Homogeneity of correlation coefficient
3. Test based on t statistic: Single mean, Difference of means, Paired t test, Correlation coefficient
4. Tests based on F statistic: Equality of two population variances
5. Testing the independence of attributes
6. Fitting of Binomial and Poisson distributions and test the goodness of fit
7. Non-parametric tests – Sign test, Wilcoxon test, Mann-Whitney U test, Median test, Run test and Kolmogorov –Smirnov one sample test

II. STATISTICAL QUALITY CONTROL

1. \bar{X} and R chart
2. p chart and np chart
3. Control chart for number of defects
4. Single Sampling Plan – OC, ATI, AOQ curves
5. Double Sampling Plan - OC, ATI, AOQ curves
6. Simple Linear Regression – Model fitting – Test for regression coefficients and confidence intervals
7. Multiple Regression (Two Independent variables) - Model fitting – Test for regression coefficients and confidence intervals
Unit I
Basic Principles for designing statistical experiments: Randomisation, Replication and local control techniques - Determination of experimental units and notion of experimental error - Analysis of variance with one–way and two–way classifications - Models and Methods of analysis.

Unit II
Completely Randomized Design (CRD) and Randomized Block Design (RBD)- Models and estimates of parameters and their standard error - Analysis of data arising from such designs, Analysis when one or two observations are missing.

Unit III
Latin Square Design (LSD) – Model – Estimation of parameters – Method of analysis – Missing Plot technique in LSD

Unit IV
Multiple Comparison tests: Least Significant Difference, Student-Newman–Keuls test , Duncan’s Multiple Range test, Tukey’s test

Unit V
Factorial Experiments: 2^2, 2^3 and 3^2 designs; estimation of main effects and interactions and their standard errors

Books for Study

Books for Reference
Unit I
Index Numbers; Construction of index numbers; fixed and chain base index numbers; weighted index numbers; standard index numbers; Tests for index numbers; cost of living index number and its construction.

Unit II
Time Series Analysis: Time Series models - Components of a time series - Methods of trend and isolation – Moving average, Seasonal indices, Ratio to trend, Link relative methods - Cyclical fluctuations

Unit III
Sources of Demographic data: Measures of mortality – Crude and specific rates, standardized rates, Infant mortality rate - Complete life table - its construction and uses. Abridged life tables

Unit IV
Measures of fertility: Crude Birth Rate (CBR), Age Specific Fertility Rate (ASFR), General Fertility Rate (GFR) and Total Fertility Rate (TFR) - Crude, Specific and standardized rates - Measures of migration, Population growth rates - Gross Reproduction Rate (GRR) and Net Reproduction Rate (NRR)

Unit V
Educational Statistics, methods of standardization of scales and tests; Z- scores, standard scores, T- scores and percentile scores; validity of test score and its determination; Intelligence Quotient, its measurement and uses.

Books for Study

Books for Reference
I. DESIGN OF EXPERIMENTS

1. Completely Randomised Design
2. Randomised Block Design and R.B.D. with one or two missing values
3. Latin Square Design and L.S.D. with one missing value
4. 2^2 Design, 2^3 Design and 3^2 Design
5. Total Confounding in 2^3 experiments

II. APPLIED STATISTICS

1. Time series: Straight line trend by method of least squares, moving average method
2. Seasonal fluctuations: Method of simple averages, Ratio to trend method, Ratio to moving average method and Link relative method.
3. Index numbers: Calculation of indices using Laspeyre’s, Paasche’s, Marshall-Edgeworth, Bowley’s and Fisher’s formula.
4. Cost of Living Index Number
5. Crude specific and Standardised death rates
1. A project work is compulsory and shall be offered in semester IV. It will have 4 credits.
2. A project work may be taken individually or by a group of two students.
3. Project work shall be supervised by a faculty member assigned by the Head of the Department in the beginning of the semester.
4. The project work should be selected in such a way that there is enough scope to apply and demonstrate the statistical techniques learnt in the course.
5. At the end of the semester, a report on the work done should be submitted (two copies). If a team of two students jointly do a project work then they must submit individual reports separately (not copy of the same report).
6. The project report shall clearly state the selected problem, the statistical methodologies employed for data collection and analysis and the conclusions arrived at. Details of previous studies in the area and related references should also be given.
7. The project work will be assessed for a maximum of 100 marks. Each student will give a seminar before the end of the semester on their project work which will be evaluated internally for a maximum of 40 marks. There will be an external viva-voce examination for a maximum of 10 marks by an internal and an external examiner. The project report will be valued by the same external and internal examiner for a maximum of 50 marks.