PONDICHERRY UNIVERSITY
Puducherry – 605 014.

BACHELOR OF PHARMACY [LATERAL ENTRY]
* B.PHARM. (LE) *

SYLLABUS AND REGULATIONS

2007 -08
INDEX

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Short Title and commencement</td>
<td>...</td>
</tr>
<tr>
<td>II.</td>
<td>Regulations</td>
<td>...</td>
</tr>
<tr>
<td>III.</td>
<td>Scheme of Examinations</td>
<td>...</td>
</tr>
<tr>
<td>IV.</td>
<td>Course of Study</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Semester – III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.1 Mathematics & Statistics</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Pharmaceutical Chemistry – III (Organic chemistry – I)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Pharmaceutical Chemistry – IV (Organic chemistry – II)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Pharmaceutical Analysis – I</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>2.3.5 Pharmaceutical Analysis – II</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Semester – IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4.1. Pharmaceutics – I (Physical Pharmacy)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>2.4.2. Pharmaceutics- III (Unit Operations – II)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>2.4.3. Pharmaceutical Microbiology</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>2.4.4. Pharmacognosy – III</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>2.4.5. Pathophysiology of common Diseases</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Semester – V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.5.1. Pharmaceutical Chemistry – V (Biochemistry)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>3.5.2. Pharmaceutics – V (Pharmaceutical Technology – I)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>3.5.3. Pharmacology – I</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>3.5.4. Pharmacognosy – IV</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>3.5.5. Pharmaceutics – VI (Hospital Pharmacy)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Semester – VI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.6.1 Pharmaceutical Chemistry – VI (Medicinal Chemistry – I)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>3.6.2 Pharmaceutics–VII(Biopharmaceutics & Pharmacokinetics)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>3.6.3 Pharmacology – II</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>3.6.4 Pharmacognosy – V (Chemistry of Natural Products)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>3.6.5 Computer Applications in Pharmacy</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Semester – VII</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.7.1 Pharmaceutical Biotechnology</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>4.7.2 Pharmaceutics – VIII (Pharmaceutical Technology – II)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>4.7.3 Pharmaceutical Industrial Management</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>4.7.4 Pharmacology – III</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>4.7.5 Pharmaceutical Chemistry – VII(Medicinal Chemistry – II)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Semester- VIII</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.8.1 Pharmaceutics – IX</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>4.8.2 Pharmaceutical Analysis – III</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>4.8.3 Pharmaceutical Chemistry–VIII (Medicinal Chemistry – III)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>4.8.4 Pharmacognosy – VI</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>4.8.5 Pharmacology–IV (Clinical Pharmacy & Drug Interactions)</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>4.8.6 Project - Elective</td>
<td>...</td>
</tr>
</tbody>
</table>

** * **
I. SHORT TITLE AND COMMENCEMENT

These regulations shall be called “THE REGULATIONS FOR THE BACHELOR OF PHARMACY (LATERAL ENTRY) DEGREE COURSE OF PONDICHERRY UNIVERSITY, Puducherry”.

They shall come into force from the academic year 2007-2008 session.

The regulation and syllabi are subject to modifications by the standing Under Graduate Board of Studies for paramedical courses from time to time.

II. REGULATIONS

1. ELIGIBILITY FOR ADMISSION:

Students who have acquired a Diploma in Pharmacy from Pharmacy Council of India recognized institutions and who are registered Pharmacist in any of the State Pharmacy Council are eligible for lateral entry to Pharmacy Degree programme.

2. DURATION OF THE COURSE AND COURSE OF STUDY:

a. The period of certified study and training of the B.Pharm. (LE) degree course shall be of Three academic years.

b. The candidates selected for B.Pharm.(LE) shall be admitted directly into II year of B.Pharm. (Regular System). The course of study of B.Pharm. (LE) will be six Semesters i.e. from III Semester to VIII Semester.

3. MEDIUM OF INSTRUCTION:

English shall be the medium of instruction for all the subjects of study and for examinations of the Course.

4. MINIMUM WORKING DAYS IN AN ACADEMIC YEAR:

Each academic year shall consist of not less than 180 working days (Minimum 90 working days per semester).
5. **REGISTRATION:**

A Candidate admitted into B.Pharm. (Lateral Entry) Degree course in any one of the affiliated institutions of the PONDICHERRY UNIVERSITY, Puducherry shall submit the prescribed application form for registration duly filled along with prescribed fee and declaration in the format, to the Academic Officer of this University through the affiliated institution within 60 days from the cut-off date prescribed for admission.

6. **ATTENDANCE REQUIRED FOR APPEARING EXAMINATION:**

 a) Examination will be conducted in both theory and practical as prescribed. Candidates will be permitted to appear for the University Examinations in the subject, only if they secure not less than 80% of attendance in each subject of the respective semester/year.

 b) A student who does not meet the minimum attendance requirement in a semester or year must repeat the course along with the next batch of students.

7. **CONDONATION FOR LACK OF ATTENDANCE:**

Condonation of shortage of attendance in aggregate up to 10% (between 70% and 80%) in each semester may be granted by the College Academic Committee and as per the regulations of University.

8. **INTERNAL ASSESSMENT:**

Internal assessment will be done in each subject of study and the marks will be awarded to the candidates as detailed in the scheme of examinations. The marks awarded will be on the basis of the candidate’s performance in the assignments, class tests, laboratory work, preparation and presentation of seminars as assessed by the teachers.

9. **EXAMINATIONS:**

The University Examinations will be conducted in the semester pattern for all the three years, each year consisting of two semesters.

The particulars of subjects for various examinations and distribution of marks are detailed in the Table II.

The examination for the main subjects will be conducted by the University and the marks for the non-examination subjects will be awarded by the subject handling faculty and forwarded to University by the concerned college.

The Pondicherry University practical examinations shall be jointly conducted by one internal and one external examiner duly appointed by the University.
10. **ELIGIBILITY / MAXIMUM DURATION FOR THE AWARD OF THE DEGREE:**

The candidates shall be eligible for the Degree of Bachelor of Pharmacy (Lateral Entry) when they have undergone the prescribed course of study for a period of not less than three years in an institution approved by the University and have passed the prescribed examinations in all subjects.

The maximum period to complete the course successfully should not exceed a period of six years.

11. **MARKS QUALIFYING FOR A PASS:**

50% of marks in the University Theory examination.
50% of marks in the University Practical examination.
50% of marks in aggregate in Theory, Practical, Viva-voce examination and Internal assessment taken together.

12. **DECLARATION OF CLASS:**

- A successful candidate obtaining 75% and more marks in the grand total aggregate in the first attempt shall be declared to have passed with **Distinction**.
- A successful candidate obtaining 60% and more but less than 75% of marks in the grand total aggregate shall be declared to have passed with **First Class**.
- A successful candidate obtaining 50% and more but less than 60% of marks in the grand total aggregate shall be declared to have passed with **Second Class**.
- Ranks shall be declared on the basis of the aggregate marks obtained by a candidate in the University Examination subjects of the course. Only those candidates who have passed all the subjects in all examination in the first attempt shall be eligible for the award of **Rank**.
III. SCHEME OF EXAMINATION

Examination Duration : 3 Hours

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subjects</th>
<th>UE Max</th>
<th>UE Min</th>
<th>IA Max</th>
<th>IA Min</th>
<th>Total Max.</th>
<th>Total Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester – III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.1</td>
<td>Mathematics & Statistics (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Pharmaceutical Chemistry – III (Organic chemistry – I) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Pharmaceutical Chemistry – IV (Organic chemistry – II) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Pharmaceutical Chemistry – IV (Organic chemistry – II) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Pharmaceutical Analysis – I (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Pharmaceutical Analysis – II (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Pharmaceutical Analysis – II (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Semester – IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>Pharmaceuticals – I (Physical Pharmacy) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Pharmaceuticals – I (Physical Pharmacy) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Pharmaceuticals- III (Unit Operations – II) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Pharmaceuticals- III (Unit Operations – II) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Pharmaceutical Microbiology (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Pharmaceutical Microbiology (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Pharmacognosy – III (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Pharmacognosy – III (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Pathophysiology of common Diseases (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Semester – V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.1</td>
<td>Pharmaceutical Chemistry –V(Biochemistry) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Pharmaceutical Chemistry –V(Biochemistry) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Pharmaceuticals – V (Pharmaceutical Technology – I) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Pharmaceuticals – V (Phamaceutical Technology – I) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Pharmacology – I (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Pharmacology – I (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Pharmacognosy – IV (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Pharmacognosy – IV (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Pharmaceuticals – VI (Hospital Pharmacy) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Pharmaceuticals – VI (Hospital Pharmacy) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Semester - VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.1 Pharmaceutical Chemistry – VI (Medicinal Chemistry - I) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Chemistry – VI (Medicinal Chemistry - I) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3.6.2 Pharmaceutics – VII (Biopharmaceutics & Pharmacokinetics) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutics – VII (Biopharmaceutics & Pharmacokinetics) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3.6.3 Pharmacology – II (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmacology – II (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3.6.4 Pharmacognosy – V (Chemistry of Natural Products) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmacognosy – V (Chemistry of Natural Products) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3.6.5 Computer Applications in Pharmacy (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Computer Applications in Pharmacy (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Semester – VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7.1 Pharmaceutical Biotechnology (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4.7.2 Pharmaceutics – VIII (Pharmaceutical Technology – II) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutics – VIII (Pharmaceutical Technology – II) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4.7.3 Pharmaceutical Industrial Management (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4.7.4 Pharmacology – III (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmacology – III (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4.7.5 Pharmaceutical Chemistry – VII(Medicinal Chemistry – II) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Chemistry – VII(Medicinal Chemistry – II) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Semester- VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8.1 Pharmaceutics – IX (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutics – IX (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4.8.2 Pharmaceutical Analysis – III (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Analysis – III (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4.8.3 Pharmaceutical Chemistry – VIII (Medicinal Chemistry – III) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Chemistry – VIII (Medicinal Chemistry – III) (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4.8.4 Pharmacognosy – VI (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Pharmacognosy – VI (Practical)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4.8.5 Pharmacology – IV (Clinical Pharmacy & Drug Interactions) (Theory)</td>
<td>80</td>
<td>40</td>
<td>20</td>
<td>-</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4.8.6 Project - Elective</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>100</td>
<td>200</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

IV.
COURSE OF STUDY

B.PHARM. (LATERAL ENTRY)
(from III Semester to VIII Semester)

SEMESTER -III

MATHEMATICS & BIOSTATISTICS

2.3.1. Theory 4 hrs / week

1. **Algebra**: Introductions
 - Equations reducible to quadratics,
 - Simultaneous equations:
 - Linear Quadratic
 - Determinants,
 - Properties of solution of simultaneous equations by Cramer’s rule,
 - Matrices,
 - Definition of special kinds of matrices,
 - Arithmetic operations on matrices,
 - Inverse of a matrix,
 - Solution of simultaneous equations by matrices,
 - Pharmaceutical applications of:
 - Determinants
 - Matrices.
 - Evaluation of:
 - En1, En2, En3, mensuration

2. **Calculus**: Introduction

 Differential: Introduction
 - Limits and functions,
 - Definition of differential coefficient,
 - Differentiation of standard functions,
 - Including function of a function (Chain rule).
 - Differentiation of implicit functions,
 - Logarithmic differentiation
 - Parametric differentiation,
 - Successive differentiation.

 Integral: Integration as inverse of differentiation,
 - Indefinite integrals of standard forms,
 - Integration by parts,
 - Substitution
 - Partial fractions,
 - Formal evaluation of definite integrals.
1. **Biometrics**: Significant digits and rounding of numbers, Data collection, Random sampling methods Non-random sampling methods, Sample size, Data organization, Diagrammatic representation of data: 1 – Dimensional Diagram 2 – Dimensional Diagram 3 – Dimensional Diagram Measures of central tendency: Introduction Mean Median Mode

Measures of dispersion: Introduction Types of studying dispersions Standard Deviation Standard error of means, Coefficient of variation, Confidence (fiducially) limits, Probability and events, Bayes’ theorem, Probability theorems, Probability distributions, Elements of binomial distribution Poisson distribution distribution Normal distribution Normal curve and properties, Fitting of Distribution Kurtosis Skewness, Correlation analysis Regression analysis, Difference between Correlation and Regression Method of least squares, Statistical inference, Student’s t – test Student’s t- test: Difference of Mean Student’s t – test for Single Mean Paired t-test, F-test Chi test Applications of statistical concepts in Pharmaceutical Sciences
2.3.2. Theory: 4 Hours/Week

The subject of organic chemistry will be treated in its modern perspective keeping for the sake of convenience, the usual classification of organic compounds:

1. **Structure and Properties:**
 - Atomic structure, Atomic orbital,
 - Molecular orbital theory,
 - Wave equation, Molecular orbital,
 - Bonding and Antibonding orbital
 - Covalent bond, Hybrid orbital, Intermolecular forces,
 - Bond dissociation energy, Polarity of bonds, Polarity of molecules,
 - Structure and physical properties,
 - Intermolecular forces,
 - Acids
 - Bases
 - Buffers

2. **Stereochemistry:**
 - Isomerism
 - Nomenclature
 - Associated physiochemical properties,
 - Optical activity, stereoisomerism,
 - Specification of configuration, Reactions involving stereo isomers,
 - Chirality, chiral reagents conformations

3. **Structure, Nomenclature, Preparation and Reactions of:**
 - Alkanes
 - Nomenclature
 - Physical Properties
 - Chemical Properties
 - Alkenes,
 - Nomenclature
 - Physical Properties
 - Chemical Properties
 - Cycloalkanes,
 - Dienes,
 - Nomenclature
 - Physical Properties
 - Chemical Properties
 - Benzene,
 - Nomenclature
 - Physical Properties
 - Chemical Properties
Polynuclear aromatic compounds,
 Nomenclature
 Physical Properties
 Chemical Properties
Arenes,
 Nomenclature
 Physical Properties
 Chemical Properties

Alkyl halides,
 Nomenclature
 Physical & Chemical Properties
Alcohols
 Nomenclature
 Physical Properties
 Chemical Properties
Ethers,
 Nomenclature
 Physical & Chemical Properties
Epoxides,
Amines,
 Nomenclature
 Physical Properties
 Chemical Properties
Phenols,
 Nomenclature
 Physical Properties
 Chemical Properties
Aldehydes and ketones,
 Nomenclature
 Physical Properties
 Chemical Properties
Carboxylic acids, Functional derivatives of carboxylic acids,
 Nomenclature
 Physical Properties
 Chemical Properties
Reactive intermediates:–
 Carbocations,
 Carbanions,
 Carbenes,
 Nitrene and nitrenium ions
SEMESTER – III

PHARMACEUTICAL CHEMISTRY – IV
(Organic Chemistry - II)

2.3.3. Theory: 3 Hours/Week

1. **Nucleophilic aromatic substitutions:**
 - Introduction and chemistry
 - Mechanism
 - Mechanism and application
 - Alpha, Beta – unsaturated carbonyl compounds:
 - Introduction and Preparations
 - Properties and Uses
 - Conservation of orbital symmetry and rules
 - Introduction and chemistry
 - Types of reactions
 - Electrocylic, Cycloaddition
 - Sigmatropic reactions:
 - Introduction and General accepts
 - Examples and reactions
 - Neighbouring group effects;
 - Catalysis by transition metal complexes,
 - Stereoselective and stereospecific reactions;
 - Introduction and Mechanism
 - Stereoselective reactions
 - Stereospecific reactions with examples
 - New organic reagents used in drug synthesis.
 - Reagents and Application
 - Synthetic reactions

2. **Heterocyclic Compounds:**
 - Chemistry, preparations and properties of some important heterocyclics containing 3, atoms with one or two heteroatoms like O, N, S:-
 - Introduction and nomenclature
 - 3 membered heterocyclic rings preparation and properties
 - Chemistry, preparations and properties of some important heterocyclics containing 4, atoms with one or two heteroatoms like O, N, S.
 - Chemistry, preparations and properties of some important heterocyclics containing 5, atoms with one or two heteroatoms like O, N, S.
 - Chemistry preparations and properties of Pyrrole and Pyrazola
 - Furan and Thiophen
 - Imidazoles
 - Oxazoles and Thiazoles
Chemistry, preparations and properties of some important heterocyclics containing 6, atoms with one or two heteroatoms like O, N, S.

Pyridine
Pyridazine and Pyrimidine
Thiazine and oxazine
Pyran and Piperazine and others

Chemistry, preparations and properties of some important heterocyclics containing 7, atoms with one or two heteroatoms like O, N, S.

Azepines and Indoles
Benzimidazoles and Purines

3. Chemistry of lipids,
 Introduction, Properties and Identification test
 Synthesis of Lipids
 Other Chemistry of Lipids
Carbohydrates,
 Introduction, Classification, Identification
 Monosaccharides and Disaccharides
 Polysaccharides
 Synthesis
Proteins
 Introduction, Classification, and Identification
 Chemistry of Proteins
Nucleic acids
 Properties and Chemistry
 Synthesis

2.3.3 Practicals: 4 hrs/week

At least five exercises in synthesis involving various heterocyclic ring systems
An exercise involving stereoselective synthesis of a compound.
Resolution of racemic DL-alanine or any other example.
Workshop on molecular modeling of primary, secondary and tertiary structures of proteins, molecular modeling on double helical structure of nucleic acid showing hydrogen bonding.
PHARMACEUTICAL ANALYSIS - I

2.3.4. Theory 3 hrs/week

Introduction

1. **Significance of quantitative analysis in quality control**
 - Different techniques of analysis
 - Preliminaries and definitions
 - Significant figures
 - Rules for retaining significant digits
 - Types of errors
 - Mean deviation, standard deviation statistical treatment of small data sets
 - Selection of sample, precision and accuracy,
 - Fundamentals of volumetric analysis
 - Methods of expressing concentration
 - Primary and secondary standards.

2. **Acids Base Titrations:**
 - Acid base concepts
 - Role of solvent relative strengths of acids and bases
 - Ionization, law of mass action, common – ion effect.
 - Ionic product of water,
 - pH, Hydrolysis of salts,
 - Henderson- Hesselbach equation, Buffer solutions,
 - Neutralization curves, Acid-base indicators,
 - Theory of indicators, choice of indicators,
 - Mixed indicators,
 - Polyprotic system, polyamine and amino acid systems, amino Acid titration, applications in assay of H$_3$PO$_4$, Na OH, Ca C0$_3$ etc.

3. **Oxidation Reduction Titrations:**
 - Concepts of oxidation and reduction, redox reactions,
 - Strengths and equivalent weights of oxidizing and reducing agents,
 - Theory of redox titrations
 - Redox indicators,
 - Cell representations measurement of electrode potential,
 - Oxidation- reduction curves, Iodimetry and Iodometry,
 - Titrations involving:
 - Ceric sulphate, potassium iodate,
 - Potassium bromate potassium permanganate
 - Titanous chloride and sodium 2, 6-dichlorophenol indophenols
4. **Precipitation Titrations**:
Precipitation reactions,
Solubility products
Effect of acids, temperature
Solvent upon the solubility of a precipitate,
Argentometric titrations
Titrations involving:
Ammonium or potassium thio cyanate,
Mercuric nitrate, and barium sulphate,
Indicators, Gay-Lussac method Mohr’s method,
Volhard’s method and Fajan’s method.

5. **Gravimetric Analysis**:
Precipitation techniques, solubility products;
The colloidal state,
Super saturation co-precipitation, post –precipitation,
Digestional washing of the precipitate,
Filtration, filter papers and crucibles, ignition.
Thermo gravimetric curves:
Specific examples like barium sulphate,
Aluminum as aluminum oxide, calcium as calcium oxalate
Magnesium as magnesium pyrophosphate, organic precipitants.
Theoretical considerations and application in drug analysis and quality control of the following analytical techniques:

1. **Non-aqueous titrations**:
 - Theoretical considerations
 - Applications in drug analysis
 - Quality control

2. **Complexometric titrations**:
 - Theoretical considerations
 - Applications in drug analysis
 - Quality control

3. **Miscellaneous Methods of Analysis**:
 - Diazotization titrations:
 - Introduction
 - Applications
 - Kjeldhal method of nitrogen estimation
 - Introduction & Theoretical consideration
 - Application in drug analysis
 - Karl-Fischer titration,
 - Introduction & Theoretical consideration
 - Application in drug analysis
 - Oxygen flask combustion,
 - Introduction & Theoretical consideration
 - Application in drug analysis
 - Gasometry.
 - Introduction & Theoretical consideration
 - Application in drug analysis

4. **Extraction procedures including separation of drugs from excipients**
 - Introduction & Theoretical consideration
 - Different extraction procedures
 - Separation of drugs from excipients

5. **Chromatography**:
 - The following techniques will be discussed with relevant examples of Pharmacopoeial products.
 - TLC,
 - Introduction & Principle
 - Instrumentation
 - Applications
HPLC,
 Introduction & Principle
 Instrumentation
 Applications

GLC,
 Introduction & Principle
 Instrumentation
 Applications

HPTLC,
 Paper Chromatography
 Introduction & Principle
 Instrumentation
 Applications

 Column Chromatography
 Introduction & Principle
 Instrumentation
 Applications

6. Potentiometry.
 Introduction & Instrumentation
 Applications

7. Conductometry.
 Introduction & Instrumentation
 Applications

8. Coulometry.
 Introduction & Instrumentation
 Applications

 Introduction & Instrumentation
 Applications

10. Amperometry.
 Introduction & Instrumentation
 Applications
2.3.5. Practicals:

1. **Non-aqueous Titrations**: Preparation and standardization of perchloric acid and sodium/potassium/lithium methoxides solutions; Estimations of some pharmacopeial products.

2. **Complexometric Titrations**: Preparations and standardization of EDTA solution, some exercises related to pharmacopeial assays by complexometric titrations.

3. **Miscellaneous Determinations**: Exercises involving diazotisation, Kjeldhal, Karl-Fischer, Oxygen flask combustion and gasometry methods. Determination of alcohol content in liquid galenicals, procedure(BPC) shall be covered.

4. Experiments involving separation of drugs from excipients.

5. Chromatographic analysis of some pharmaceutical products.

7. Exercises involving polarimetry.

8. Exercises involving conductometric and polarographic techniques.
2.4.1. Theory

Matter, Properties of Matter:
State of matter, change in the state latent heats and vapour pressure,
Sublimation-critical point,
Eutectic mixture,
Gases, aerosols-inhalers, relative humidity,
Liquid complexes, liquid crystals
Glassy state, solids- crystalline, amorphous and Polymorphism

MICROMERETIC AND POWER RHEOLOGY:
Particle size and distribution, particle Size, number and weight distribution,
Particle number and weight distribution, particle number,
Methods determining particle volume, optical microscopy, sieving,
Sedimentation, measurement, particle shape, specific surface, methods for
Determining surface area,
Permeability, adsorption, derived properties of powers,
Porosity, packing arrangement, densities, bulkiness and flow properties

SURFACE AND INTERFACIAL PHENOMENON:
Liquid interface, surface and interfacial tensions,
Surface free energy , measurement of surface and interfacial tensions,
Spreading coefficient, adsorption at liquid interfaces,
Surface active agents, HLB classification,
Solubilization, detergency, adsorption at solid interfaces,
Solid gas and solid-liquid interfaces,
Complex films, electrical properties of interface

Viscosity and rheology:
Newtonian systems, Law of flow, Kintemaetic viscosity,
Effect of temperature,
Non-Newtonian systems,
Pseudo plastic, dilatants,
Plastics, thixotropy, thixotropy in formulation,
Determining of viscosity, capillary, falling ball, rotational viscometers.

Dispersion systems:
Colloidal dispersions: Definition, types, properties of colloids,
Protective colloids, applications of colloids in pharmacy;
Suspensions and emulsions: Interfacial properties of suspended particles,
Settling suspensions,
Theory of sedimentation, effect of Brownian movement,
Sedimentation of flocculated particles, Sedimentation parameters,
Wetting of particles,
Controlled flocculation, flocculation in structured vehicles,
Rheological considerations;
Emulsions-types, theories, physical stability
Complexation:
Classification of complexes,
Methods of preparation
Analysis,
Applications

Kinetics and drug stability:
General considerations and concepts,
Half-life determination,
Influence of temperature, light, solvent,
Catalytic species and other factors,
Accelerated stability study, expiration dating.

Buffer:
Buffer equations and buffer capacity in general,
Buffers in pharmaceutical systems,
Preparation, stability, buffered isotonic solutions,
Measurements of tonicity,
Calculations and methods of adjusting isotonicity

2.4.1. Practicals 4 hrs / week

Determination of latent heat, vapour pressure, critical point.
Studies on polymorphs, their identification and properties.
Determining of particle size, particle size distribution and surface area using various methods of particle size analysis.
Determination of derived properties of powders like density, porosity, compressibility, angle of repose etc.
Determination of surface interfacial tension, HLB value and critical micellar concentration of surfactants.
Study of rheological properties of various types of systems using different viscometers.
Studies of different types of colloids and their properties.
Preparation of various types of suspensions and determination of their sedimentation parameters.
Preparation and stability studies of emulsions.
Studies on different types of complexes and determination of their stability constants.

Determination of half-life, rate constant and order of reaction.
To study the influence of various factors on the rate of reaction.

Accelerated stability testing, shelf-life determination and expiration dating of pharmaceuticals.

Preparation of pharmaceutical buffers and determination of buffer capacity.

Experiments involving tonicity adjustments.
2.4.2. Theory 3 hrs / week

Stoichiometry:
Unit processes material and energy balances, molecular units
mole fraction, tie substance
Gas laws, mole volume, primary and secondary quantities
Equilibrium state, rate process, steady and unsteady states
Dimensionless equations, dimensionless formulae, dimensionless groups
Different types of graphic representation, mathematical problems

Heat transfer:
Source of heat, heart transfer
Steam and electricity as heating media
Determination of requirement of amount of steam electrical energy
Steam pressure
Boiler capacity
Mathematical problems on heat transfer

Evaporation:
Basic concept of phase equilibria
Factor affecting evaporation
Evaporators, film evaporators
Single effect and multiple effect evaporators
Mathematical problems on evaporation

Distillation:
Rault,s law, phase diagrams, volatility
Simple steam
Flash distillations.
Principles of rectification
Mc. Cabe thiele method for calculations of number of theoretical plates
Azeotropic and extractive distillation
Mathematical problems on drying

Drying:
Moisture content and mechanism of drying, rate of drying
Time of drying calculations
Classification and types of dryers
Dryers used in pharmaceutical industries and special drying methods
Mathematical problems on drying

Size reduction and size separation:
Definition, objectives of size reduction,
Factors affecting size reduction,
Laws governing energy and power requirements of mills
Including ball mill, hammer mill,
Fluid energy mill etc

Mixing:
Theory of mixing,
Solid-solid,
Solid-liquid
Liquid-liquid mixing equipments

Automated process control systems:
Process variables, temperature, pressure, flow, and level
Vacuum and their measurements
Elements of automatic process control
Introduction to automatic process control systems
Elements of computer aided manufacturing (CAM)

Reactors:
Fundamentals of reactors
Design for chemical reactions.

2.4.2. Practicals

4 hrs / week

Determination of overall heat transfer coefficient.
Determination of rate of evaporation.
Experiments based on stema, extractive and azeotropic distillations.
Determination of rate of drying, free moisture content and bound moisture content.
Experiments to illustrate the influence of various parameters on the rate of drying.
Experiments to illustrate principles of size reduction, laws governing energy and power requirements of size reduction.
Experiments to illustrate solid-solid mixing, determination of mixing efficiency using different types of mixers.
SEMESTER –IV

PHARMACEUTICAL MICROBIOLOGY

2.4.3. Theory 3 hrs / week

1. Introduction to the scope of microbiology.
 a). Historical aspects Common terms and measurements used in Microbiology
 b). Scope of Microbiology – significance of microbiology in pharmaceutical studies

2. Structure of bacterial cell.

3. Classification of microbes and their taxonomy
 Classification of Bacteria
 Classification of Viruses
 Classification of Fungi
 Classification of Parasites

4. Identification of microbes :
 Microscopy
 Staining techniques – Types , Gram’s stain
 Staining techniques – Z,N stain, Albert’s stain
 LPCB mount, Leishman stain etc
 Morphology, Biochemical characters, serological characters etc

 Nutrition and cultivation of Fungi
 Nutrition and cultivation of Virus

6. Microbial genetics and variation.
 Basic principles and characters of microbial genome
 Genetic variations and mechanisms transmission of genetic material
 Genetic mechanisms of drug resistance and genetic Engineering

7. Control of microbes by physical and chemical methods.
 a. Disinfection, factors influencing disinfectants, dynamics of disinfection,
 Agents used for disinfectants and antiseptics
 Evaluation of disinfectants and antiseptics
b. Sterilization - different methods, a) Dry heat sterilization
 b) Moist heat sterilization
 Validation of sterilization methods
 Sterilization equipments
 Importance and application of sterilization principles in pharmacy

8. Sterility testing as per IP requirement
 Sterility testing of antisera, vaccines, IV fluids, etc
 Sterility testing of oral and topical medicines
 Sterility testing of other invasive and non invasive pharmacy products
 Pyrogen testing

9. Infection, sources of infection, methods of transmission
 Acquired Immunity definition and classification
 Immune response, primary, secondary
 Defense mechanisms of body - innate acquired immunity, interferon
 Microbial resistance and pathogenicity

10. Antibiotic sensitivity tests and their importance
 Dilution and diffusion tests for antibiogram
 Antibiotic assays of body fluids
 Microbial assays of vitamins
 Microbial assays of amino acids

2.4.3. Practicals 4 hrs / week

Experiments devised to prepare various types of culture Media
Sub-culturing of common aerobic and anaerobic bacteria, fungi.
Various staining methods,
Various methods of isolation and identification of microbes,
Sterilization techniques and their validation of sterilizing techniques,
Evaluation of antiseptics and disinfectants, testing the sterility of
Pharmaceutical products as per I.P. requirements,
Microbial assay of antibiotics and vitamins etc.
2.4.4. Theory

1. Study of the biological sources, cultivation, and collection, commercial varieties, chemical constituents, substitutes, adulterants, uses, diagnostic macroscopic and microscopic features and specific chemical tests of following groups of drugs containing glycosides:

 Introduction

 i). **Saponins:**
 - Liquorice,
 - Ginseng, dioscorea,
 - Sarsaparilla, and senega

 ii). **Cardioactive sterols:**
 - Digitalis,
 - Squill,
 - Strophanthus and Thevetia

 iii). **Anthraquinone cathartics:**
 - Aloe,
 - Senna,
 - Rhubarb and Cascara

 iv). **Others:**
 - Psoralea, Ammi majus,
 - Ammi visnaga, Gentian,
 - Saffron
 - Chirata, Quassia

2. Studies of traditional drugs, common vernacular names, botanical sources, morphology, chemical nature of chief constituents, pharmacology, categories and common uses and marketed formulations of following indigenous drugs:

 Introduction:
 - Amla
 - Kanthkari
 - Satavari and Tylophora
 - Bhilawa and kalijiri
 - Bach and Rasna
 - Punarnava
 - Chitrack and Apamarg
 - Gokhru
 - Shankhapushpi
 - Brahmi
 - Adusa
 - Arjuna
 - Ashoka
 - Methi
 - Lahsun and palash
 - Guggal
 - Gymnema
 - Shilajit
 - Nagarmotha
 - Neem
3. The Holistic concept of drug administration in traditional systems of medicine
 Introduction to Ayurvedic preparations like,
 Arishtas
 Asvas
 Gutikas
 Tailas
 Churnas
 Lehyas
 Bhasmas

 Preparation
 Evaluation

2.4.4. Practicals 4 hrs / week

1. Identification of crude drugs listed in theory

2. Microscopic study of some important glycoside containing crude drugs as outlined above. Study of powdered drugs

3. Standardization of some traditional drug formulations
2.4.5. Theory

1. Basic principles of cell injury and adaptation:
 Causes of cellular injury
 Reversible
 Irreversible
 Pathogenesis
 Morphology of cell injury
 Intercellular alterations in lipids
 Proteins and carbohydrates
 Cellular adaptation
 Atrophy, hypertrophy

2. Basic mechanisms involved in the process of inflammation and repair:
 Alterations in vascular permeability
 Blood flow,
 Migration of WBC’S
 Acute inflammation
 Chronic inflammation
 Mediators of inflammation
 Brief outline of the process of repair
 Cell cycle
 Vascularisation
 New growth

3. Pathophysiology of common diseases:
 Rheumatoid arthritis, gout
 Epilepsy
 Psychosis
 Depression
 Mania
 Hypertension
 Angina
 Congestive heart failure
 Atherosclerosis
 Myocardial infarction
 Diabetes
 Peptic ulcer
 Asthma
 Ulcerative colitis
 Hepatic disorders
 Acute/Chronic renal failure
 Tuberculosis
 Urinary tract infections
 Sexually transmitted diseases
 Anemias
 Common types of neoplasms
SEMESTER – V

PHARMACEUTICAL CHEMISTRY – V
(Biochemistry)

3.5.1. Theory: 3 Hours/Week

1. Biochemical organization of the cell and transport processes across cell membrane.

2. The concept of free energy, determination of change in free energy from equilibrium constant
Reduction potential, bioenergetics, Production of ATP
and its biological significance.

3. Enzymes:
 Nomenclature, enzyme kinetics and its mechanism of action, mechanism of inhibition,
 Enzymes and iso-enzymes in clinical diagnosis

4. Co-enzymes:
 Vitamins as co-enzymes and their significance
 Metals as co-enzymes and their significance

5. Carbohydrate Metabolism:
 Conversion of polysaccharide to glucose –1- phosphate,
 Glycolysis and fermentation and their regulation
 Gluconeogenesis and glycogenolysis,
 Metabolism of galactose and galactosemia,
 Role of sugar nucleotides in biosynthesis,
 and Pentosephosphate pathway.

6. The Citric Acid Cycle:
 Significance, reactions and energetic of the cycle,
 Amphibolic role of the cycle, and Glyoxalic acid cycle

7. Lipids Metabolism:
 Oxidation of fatty acids, Beta oxidation and its energetics
 Alpha oxidation, Omega oxidation
 Biosynthesis of ketone bodies and their utilization,
 Biosynthesis of saturated and unsaturated fatty acids,
 Control of lipid metabolism,
 Essential fatty acids and eicosanoids prostaglandins
 Thromboxanes and leukotrienes
 Phospholipids and sphingolipids

8. Biological Oxidation:
 Redox-Potential, enzymes and co-enzymes involved in
 Oxidation reduction and its control
 The respiratory chain, its role in energy capture and its control,
Energetics of oxidative phosphorylation,
Inhibitors of respiratory chain and oxidative phosphorylation,
Mechanism of oxidative phosphorylation

9. **Nitrogen and Sulphur Cycle**:
Nitrogen fixation, ammonia assimilation, nitrification and
Nitrate assimilation
Sulphate activation, sulphate reduction. Incorporation of
sulphur in organic compounds, Release of sulphur from
Organic compounds

10. **Metabolism of Ammonia and Nitrogen Containing Monomers**:
Nitrogen balance, Biosynthesis of amino acids,
Catabolism of amino acids, Conversion of amino acids to
specialized products,
Assimilation of ammonia, Urea cycle,
Metabolic disorders of urea cycle,
Metabolism of sulphur containing amino acids
Porphyrin biosynthesis
Purine nucleotide interconversion
Pyrimidine biosynthesis
Formation of deoxyribonucleotides

Biosynthesis of Nucleic Acids:
Brief introduction of genetic organization of the mammalian genome
Alteration and rearrangements of genetic material,
Biosynthesis of DNA and Replication of DNA
Mutation, Physical and Chemical mutagenesis
Carcinogenesis,
DNA repair mechanism,
Biosynthesis of RNA.

11. **Genetic Code and Protein Synthesis**:
Genetic code,
Components of protein synthesis
Inhibition of Protein synthesis
Brief account of genetic engineering
Polymerase chain reaction.

12. Regulation of gene expression.
3.5.1 **Practicals:**

1. Preparation of standard buffers (citrate, phosphate and carbonate) and measurement of pH.
2. Titration curve for amino acids.
3. Separation of amino acids by two dimensional paper chromatography and gel electrophoresis.
4. The separation of lipids by TLC.
5. Separation of serum proteins by electrophoresis on cellulose acetate.
8. The identification of c-terminal amino acids of a protein.
9. The identification of glucose by means of the enzyme glucose oxidase.
10. The isolation and assay of glycogen from the liver and skeletal muscle of rats.
11. Enzymatic hydrolysis of glycogen by alpha and beta amylases.
12. The isolation and determination of RNA and DNA.
SEMESTER - V
PHARMACEUTIS - V
(PHARMACEUTICAL TECHNOLOGY – I)

3.5.2. Theory 3 hrs / week

Liquid dosages forms:
Introduction, types of additives used in formulations
Vehicles, stabilizers, preservatives
Suspending agents, emulsifying agents
Solubilizers, colors, flavours and others
Manufacturing packaging and evaluation of clear liquids
Suspensions and emulsions official in pharmacopoeia

Semisolid dosage forms:
Definitions, types, mechanisms of drug penetration factors influencing penetration
Semisolid bases and their selection
General formulation of semisolids
Clear gels manufacturing procedure
Evaluation and packaging

Suppositories:
Ideal requirements, bases
Manufacturing procedure
Packaging and Evaluation

Extraction and galenical products:
Principle and
Method of extraction
Preparation of infusion
Tinctures, dry and soft liquid extracts

Blood products and plasma substitutes:
Collection, processing and storage of whole human blood
Concentrated human RBC’S
Dried human plasma
Human fibrinogen
Human thrombin
Human normal immunoglobulin
Human fibrin
Foam plasma substitutes
Ideal requirements, PVP, dextran etc. for control of blood pressure as per I.P.
Pharmaceutical aerosols:
Definition, propellants
General formulation
Manufacturing and
Packaging methods
Pharmaceutical applications

Ophthalmic preparations:
Requirements
Formulation
Methods of preparation
Containers
Evaluation

Cosmeticology and cosmetic preparations:
Fundamentals of cosmetic science,
Structure and functions of skin and hair
Formulation, preparation and packaging of cosmetics for skin, hair
Dentifrice and
Manicure preparations like nail polish,
Lipsticks,
Eye lashes, baby care products etc.

3.5.2. Practical
4 hrs / week

Preparation, evaluation and packaging of liquid orals like lotions, suspensions and emulsions, ointments, suppositories, aerosols, eye drops, eye ointments etc.

Preparation of pharmacopoeial extracts and galenical products utilizing various methods of extraction.

Collection, processing, storage and fractionation of blood.

Formulation of various types of cosmetics for skin, hair, dentifrices and manicure preparations.
3.5.3 Theory: 3 hrs/ week

1. **General Pharmacology**:
 - Introduction to Pharmacology, Sources of drugs,
 - Dosage forms and routes of administration
 - Mechanism of action
 - Combined effect of drugs
 - Factors modifying Drug action
 - Tolerance and dependence
 - Pharmacogenetics
 - Absorption
 - Distribution
 - Metabolism
 - Excretion of drugs, Principles of Basic and Clinical pharmacokinetics
 - Adverse Drug Reactions
 - Treatment of poisoning
 - ADME drug interactions,
 - Bioassay of Drugs
 - Biological Standardization
 - Discovery of drugs
 - Development of new drugs

2. **Pharmacology of Peripheral Nervous System**:
 a. Neurohumoral transmission (Autonomic and Somatic)
 b. Parasympathomimetics
 - Parasympatholytics
 - Sympathomimetics
 - Adrenergic Receptor and neuron blocking agents
 - Ganglionic stimulants and blocking agents
 c. Neuromuscular blocking agents
 d. Local anesthetic agents

3. **Pharmacology of Central Nervous System**:
 a. Neurohumoral transmission in the C.N.S.
 b. General Anesthetics.
 - Stages
 - Drugs
 c. Alcohols and disulfiram.
 d. Sedatives, hypnotics,
 - Anti-anxiety agents
 - Centrally acting muscle relaxants.
 e. Psychopharmacological agents anti-psychotics
 - anti-depressants, anti-maniacs and hallucinogens.
 f. Anti-epileptics drugs.
 - Types
 - Drugs
g. Anti-Parkinsonism Drugs.
h. Analgesics, Antipyretics, Anti-inflammatory
 Anti-gout drugs.
i. Narcotic analgesics
 Antagonists.
j. C.N.S. stimulants.
k. Drug Addiction and Drug abuse.

3.5.3 Practicals: 4 hrs / week

1. **Introduction to Experimental Pharmacology:**
 Preparation of different solutions for experiments.
 Drug dilutions, use of molar and w/v solutions in experimental pharmacology.

 Common laboratory animals and anesthetics used in animal studies. Commonly used instruments in experimental pharmacology.

 Some common and standard techniques.
 Bleeding and intravenous injection, intragastric administration.

 Procedures for rendering animals unconscious – stunning of rodents, pithing of frogs, chemical euthanasia.

2. **Experiments on intact preparations:**
 Study of different routes of administration of drugs in mice/rats.

 To study the effect of hepatic microsomal enzyme inhibitors and induction on the pentobarbitone sleeping time in mice.

3. **Experiments on Central Nervous System:**
 Recording of spontaneous motor activity, stereotypy, analgesia, anticonvulsant activity, anti-inflammatory activity, and muscle relaxant activity of drugs using simple experiments.

4. Effects of autonomic drugs on rabbit’s eye.
5. Effects of various agonists and antagonists and their characterization
6. using isolated preparations like frog’s rectus abdominal muscle and
7. Isolated ileum preparations of rat, guinea pig and rabbit.
SEMESTER-V

PHARMACOGNOSY- IV

3.5.4. Theory

1. Systematic study of source, cultivation, collection, processing, commercial varieties, chemical constituents, substitutes, adulterants, uses diagnostic macroscopic and microscopic features and specific chemical tests of following alkaloid containing drugs:

a). **Pyridine – piperidine:**
 Tobacco,
 Areca and lobelia

b). **Tropane:**
 Belladonna
 Hyoscyamus
 Datura
 Duboisia
 Coca
 Withania

c). **Quinoline and isoquinoline:**
 Cinchona
 Ipecac
 Opium

d). **Indole:**
 Ergot
 Rauwolfia
 Catharanthus
 Nux-vomica and physostigma

e). **Imidazole:** Pilocarpus
f). **Steroidal:** Veratrum and Kurchi

g). **Alkaloidal amine:**
 Ephedra
 Colchicum

h). **Glycoalkaloid:** Solanum

i). **Purines:**
 Coffee
 Tea and cola
2. **Role of**
 Medicinal plants in national economy
 Aromatic plants in national economy

3. **Biological sources, preparation, identification tests and uses of the following enzymes:**
 - Diastase
 - Papain
 - Pepsin
 - Trypsin
 - Pancreatin

4. **General techniques of biosynthetic studies**
 - Basic metabolic pathways
 - Shikimic acid pathways
 - Brief introduction to biogenesis of secondary metabolites of Pharmaceutical importance
 - Biosynthesis of Glycosides
 - Biosynthesis of Alkaloids
 - Biosynthesis of isoprenoid compounds

5. **Plant bitters**
 - Sweeteners

6. **Introduction and classification**
 - Study of different chromatographic methods:
 - Paper
 - TLC
 - HPLC
 - GC, HPTLC
 - Electrophoresis
 - Applications in evaluation of herbal drugs

3.5.4. **Practicals**
4 hrs / week

1. Identification of crude drugs listed above

2. Microscopic study of characters of eight- selected drugs given in theory in entire and powdered form.

3. Chemical Evaluation of powdered drugs, and enzymes

4. Chromatographic studies of some herbal constituents
1. Organization and structure:
 Organization of a hospital and hospital pharmacy
 Responsibilities of a hospital pharmacist
 Pharmacy and therapeutic committee
 Budget preparation and Implementation

2. Hospital formulary:
 Contents,
 Preparation
 Revision of hospital formulary

3. Drug store management and inventory control:
 a. Organization of drug store,
 Types of materials stocked, and Storage conditions
 b. Purchase and inventory control principles
 Purchase procedures
 Purchase order
 Procurement and stocking

4. Drug distribution systems in hospitals:
 b. Dispensing of drugs:
 Inpatients
 Types of drug distribution systems
 Charging policy, labeling.
 c. Dispensing of drugs to ambulatory patients.
 d. Dispensing of controlled drugs.

5. Central sterile supply unit and their management:
 Types of materials for sterilization,
 Packing of materials prior to sterilization,
 Sterilization equipments,
 Supply of sterile materials

6. Manufacture of sterile and non sterile products:
 Policy making of manufacturability items
 Demand and costing
 Personnel requirements
 Manufacturing practice
 Master formula card
 Production control, manufacturing records
7. **Drug information services:**
 Sources of information on drugs, Disease, treatment schedules,
 Procurement of information,
 Computerized services (e.g., MEDLINE),
 Retrieval of information,
 Medication error

8. **Records and reports:**
 Prescription filling, drug profile,
 Patient medication profile,
 Cases on drug interaction
 Adverse reactions, idiosyncratic cases etc.

9. **Nuclear Pharmacy:**
 Introduction to Radio Pharmaceuticals,
 Radio-active half life, Units of radio-activity
 Production of radio-pharmaceuticals,
 Methods of isotopic tagging,
 Preparation of radio-isotopes in the laboratory using radiation
 dosimeter, radio-isotope generators, Permissible radiation dose level.
 Radiation hazards and their prevention,
 Specifications for radio-active laboratory.

3.5.5. **Practicals**
4 hrs / week

1. Experiments based on Sterilization of various types of materials used in Hospitals.

2. Practicals designed on the use of computers in Drug Information Centre, prescription filling, documentation of information on drug interaction.

3. Experiments to illustrate handling of radiopharmaceutical products, measurement of radioactivity.
1. Basic Principles of Medicinal Chemistry:
Physio-chemical aspects (Optical, geometric and bioisosterism) of Drug
molecules and Biological action, Optical

Geometrical
Bio isosterism
Protein Binding

Solubility and Partition coefficient
Ionisation
Hydrogen
bonding and Biological action

Chelation
Oxidation reduction potential and surface activity
Ferguson principles

Drug – receptor interaction including transduction mechanisms.

Introduction and Isosterism
Forces involved in drug receptor inter reactions

2. Principles of Drug Design (Theoretical Aspects):
Traditional analog (QSAR) and mechanism based approaches
Introduction to graph theory:

Introduction,
Factors governing drug design
Rational approach to drug design
Mechanism

Applications of quantum mechanics, Computer aided

Drug designing (CADD) Molecular modeling.
Mechanical approach and molecular orbital indices
Examples of molecular orbital SAR studies
Molecular orbital approach
Theoretical methods based upon model systems
Quantum mechanism

Synthetic procedures of selected drugs, mode of action, uses, structure
activity relationship including physiochemical properties of the following
classes of drugs:
Drugs acting at Synaptic and neuro-effector junction sites:

i. Cholinergics and Anticholinesterases
 Introduction, classification, mode of action,
 Physiochemical properties
 Synthesis of Cholinergics
 SAR and synthesis of Anticholinesterases

ii. Adrenergic drugs
 Adrenaline and non adrenaline and others
 Alpha Blockers
 Beta Blockers

iii. Antispasmodic and anti ulcer drugs
 Introduction, classification, Properties, mode of action
 SAR
 Synthesis

iv. Neuromuscular blocking agents.
 Non depolarizing drugs
 Depolarizing

B. Autocoids

i. Antihistamines
 Classification, mode of action, properties
 and chemistry
 SAR and synthesis
 Synthesis

ii. Eicosanoids
 Introduction chemistry
 SAR mode of action and synthesis

iii. Analgesic- antipyretics, anti-inflammatory
 (non-steroidal) agents.
 Introduction, mode of action
 SAR
 Synthesis

C. Drugs affecting uterine motility:

Oxytocics (including oxytocin, ergot alkaloids and prostaglandins).
Biochemical approaches in drug designing wherever applicable should be discussed.

 Oxytocin
 Ergot alkaloids
 Prostaglandins
3.6.1. Practicals

2. Syntheses of selected drugs from the course content.
3. Spectral analysis of the drugs synthesized.
4. Establishing the pharmacopoeial standards of the drug synthesized.
 Determination of partition coefficient, dissociation constant and molar refractivity of compounds for QSAR analysis.
3.6.2. Theory

1. Introduction to biopharmaceutics
 Pharmacokinetics
 Role in formulation development and clinical setting

2. Biopharmaceutics:
 a. Passage of drugs across biological barrier
 Passive diffusion
 Active transport
 Facilitated diffusion
 Pinocytosis).
 b. Factors influencing absorption
 Physicochemical,
 Physiological
 Pharmaceutical
 c. Drug distribution in the body,
 Plasma protein binding

3. Pharmacokinetics:
 a. Significance of plasma drug concentration measurement.
 b. Compartment model- definition and scope.
 c. Pharmacokinetics of drug absorption – zero order first order absorption
 rate constant using Wagner – Nelson and Loo- Reigelman method
 d. Volume of distribution and distribution coefficient.
 Compartment kinetics – one compartment and two Compartment models

Determination of pharmacokinetic parameters from plasma and
 Urine data after drug administration by intravascular and oral route
 Curve fitting (method of Residuals), regression procedures.
 e. Clearance concept,
 Mechanism of renal clearance,
 Clearance ratio,
 Determination of renal clearance
 f. Extraction ratio,
 Hepatic clearance,
 Biliary excretion
 Extrahepatic circulation
g. Non-linear pharmacokinetics with special reference to one
Compartment model after I.V. drug administration,
Michael Menten Equation
Detection of non-linearity (Saturation mechanism)

4. Clinical pharmacokinetics:
a. Definition and scope
b. Dosage adjustment in patients with renal failure
 Without renal failure
 With Hepatic failure
c. Design of single dose bio-equivalence study
 Relevant statistics
d. Pharmacokinetic drug interactions &
 their significance combination therapy

5. Bioavailability and bioequivalence:
a. Measures of bioavailability, c_{max}, t_{max} and area under
 the curve (AUC)
b. Design of single dose bioequivalence study
 Relevant statistics
c. Review of regulatory requirements for conduction of bioequivalent
 studies

3.6.2 Practicals

Experiments designed for the estimation of various pharmacokinetics
parameters with given data. - 12 hrs

1. Analysis of biological specifications for drug content and
 estimation of the pharmacokinetic parameters.
 In vitro evaluation of different dosage forms for drug release
 Absorption studies – in vitro and in situ.
2. Statistical treatment of pharmaceutical data.
3.6.3 Theory: 4 hrs/week

1. Pharmacology of Cardiovascular System:
 Introduction
 a. Digitalis
 Cardiac glycosides
 b. Antihypertensive drugs:
 Classification
 Mechanism
 Adverse effect
 c. Antianginal
 Vasodilator drugs
 Calcium channel blockers
 Beta adrenergic antagonist
 d. Antiarrythmic drugs:
 Classification
 Mechanism
 Adverse effect
 e. Antihyperlipidemic drugs.
 Classification
 Mechanism
 Adverse effect
 f. Drugs used in the therapy of shock.

2. Drugs Acting on the Hemopoietic System:
 a. Hematinics.
 b. Anticoagulants, Vitamin K
 Hemostatic agents
 c. Fibrinolytic
 Anti-platelet drugs
 d. Blood and plasma volume expanders.
 Introduction
 Advantage and Disadvantage

3. Drugs acting on urinary system:
 Fluid and electrolyte balance
 a. Diuretics:
 Loop diuretics
 Thiazide diuretics

4. Autocoids:
 a. Histamine
 5-HT antagonists
 Histamine antagonists
b. Prostaglandins
 Thromboxanes
 Leukotrienes.

c. Pentagastrin,
 Cholecystokinin
 Angiotensin
 Bradykinin
 Substance P

5. Drugs Acting on the Respiratory System:

 a. Anti-asthmatic drugs
 Bronchodilators
 b. Anti-tussives
 Expectorants
 c. Respiratory stimulants.
 Cortical
 Medullary

3.6.3. Practicals:

1. Experiments on Isolated Preparations:

 a. To record the concentration response curve (CRC) acetylcholine using rectus abdominis muscle preparation of frog.
 b. To study the effects of physostigmine and d-tubocurarine on the CRC of acetylcholine using rectus abdominis muscle preparation of the frog.
 c. To record the CRC of 5-HT on rat fundus preparation.
 d. To record the CRC of histamine on guinea pig ileum preparation.
 e. To record the CRC of noradrenaline on rat anococcygeus muscle preparation.
 f. To record the CRC of oxytocin using rat uterus preparation.

2. Pharmacology of Cardiovascular System:

 a. To study the ionotropic and chronotropic effects of drugs on isolated frog heart.
 b. To study the effects of drugs on normal and hypodynamic frog heart.

3. Blood Pressure of anaesthetized Dog/Cat/Rat:

 a. To demonstrate the effects of various drugs on the B.P. and respiration including the Vasomotor Reversal of Dale and nicotinic action of acetylcholine.
1. Chemical approaches to simple molecules of natural origin.
 Spectral approaches to simple molecules of natural origin
 UV – Visible
 IR
 NMR
 Mass and X-ray diffraction
 Others

2. Concept of stereoisomerism
 Geometrical Isomerism
 Optical Isomerism
 Examples of Isomerism from natural products

3. Chemistry, biogenesis and pharmacological activity of medicinal important:
 Nomenclature of Terpenes
 Monoterpenes,
 Sesquiterpenes,
 Diterpenes,
 Triterpenoids.

4. Carotenoids:
 Introduction, Characteristic and Functions
 \(\alpha \) - carotenoids
 \(\beta \) - carotenes
 Vitamin A
 Xanthophylls of medicinal importance

5. Glycosides: Chemistry and biosynthesis of
 Digitoxin,
 Digoxin
 Hecogenin
 Sennosides
 Diosgenin
 Sarasapogenin

6. Alkaloids:
 Chemistry and Biogenesis
 Atropine and related compounds
 Quinine
 Reserpine
Morphine and Papaverine
Ephedrine
Ergot
Vinca alkaloids
Pharmacological activity of
Atropine and related compounds, Quinine, Reserpine
Morphine and Papaverine, Ephedrine, Ergot, Vinca alkaloids

7. Chemistry and biogenesis of medicinally important
lignans
Quassanoids
Flavonoids

8. Chemistry of
Penicillin
Streptomycin
Tetracyclines

Therapeutic activity of
Penicillin
Streptomycin
Tetracyclines

3.6.4. Practicals 4 hrs/week

1. Laboratory experiments on isolation, separation, purification of various
groups of chemical constituents of pharmaceutical significance.

2. Exercises on paper and thin layer chromatographic evaluations
of herbal drug constituents
SEMESTER- VI

COMPUTER APPLICATIONS IN PHARMACY

3.6.5. Theory 3 hrs / week

1. Introduction to Computers.
2. Computer applications in pharmaceutical and clinical studies
3. Computer Classification
 Mainframe, Mini and Micro Computers,
 Comparison of Analog and Digital Computers
 Hardware and Software, Calculator and Computer
4. Operating Systems
 Introduction, Types of operating systems, MS – DOS, LYNX
 and WINDOWS XP
5. Introduction to Data Structure
 Like Queues, List, trees, Binary trees algorithms, Flow Chart,
 Structured Systems, Analysis, Development, Ingress-SQL,
 Statistics and Methodologies
6. Type of Languages
 Conventional languages, their advantages, limitations
 C, Visual Basic and Programming of these languages
7. Computer Graphics
8. Introduction to Computer Networks
 Architecture of seven layers of communications
9. Introduction to Internet
10. Basic Electronics
 Semiconductors, p-n function diode, LED, photodiode and its
 uses. Rectifiers (half wave, full wave / with filters),
 Transistors configurations, Transistor amplifiers. Introduction
 to Integrated circuits, photocells and photomultiplier tubes

3.6.5. Practicals 4 Hours/week

Exercises based on the following are to be dealt:

1. Computer operating systems like MS-DOS, WINDOWS XP and LYNX
2. Simple programs in C and VISUAL BASIC
3. Study of soft-ware packages like Chem Draw, Tinker and WinMopac
4. Microsoft Package (Document, Spreadsheet, Presentations and Storage)
1. Immunology and Immunological preparations:
 Principles,
 Antigens and haptens,
 Immune system
 Cellular humoral immunity,
 Immunological tolerance,
 Antigen-antibody reactions
 Applications
 Hypersensitivity,
 Active
 Passive immunization;
 Vaccines- their preparation,
 Standardization and storage

2. Genetic recombination:
 Transformation,
 Conjugation,
 Transduction,
 Protoplast fusion
 Gene cloning
 Application
 Development of hybridoma for monoclonal antibodies
 Study of drugs produced by biotechnology such as Activase,
 Humulin
 Humatrope
 HB etc

3. Antibiotics:
 Historical development of antibiotics
 Antimicrobial spectrum and methods used for their standardization
 Screening of soil for organisms producing antibiotics fermenter,
 Its design, control of different parameter
 Isolation of mutants
 Factors influencing rate of mutation
 Design of fermentation process
 Isolation of fermentation products with special reference to penicilins
 Streptomycins,
 Tetracyclines
 Vitamin B12
4. **Microbial transformation:**
 - Introduction
 - Types of reactions mediated by microorganisms
 - Design of biotransformation processes
 - Selection of organisms
 - Biotransformation process
 - Its improvements with special reference
 - Steroids

5. **Enzyme Immobilization:**
 - Techniques of immobilization of enzymes
 - Factors affecting enzyme kinetics
 - Study of enzymes such as hyaluronidase
 - Penicillinase,
 - Streptokinase
 - Streptodornase,
 - Amylases
 - Proteases etc
 - Immobilization of bacteria
 - Plant cells
1. **Capsules:**
 Advantages and disadvantages of capsule dosage form,
 Material for production of hard gelatin capsules, size of capsules
 Method of capsule filling, soft gelatin
 Capsule shell and capsule content
 Importance of base absorption and minimum /gm factors in
 Soft capsules
 Quality control, stability testing
 Storage of capsule dosage forms.

2. **Micro-encapsulation:**
 Types of microcapsules, importance of micro encapsulation
 in pharmacy
 Micro encapsulation by phase separation, co-acervation,
 Multi orifice, spray drying,
 Spray congealing,
 Polymerization complex emulsion,
 Air suspension technique, coating pan and other techniques,
 Evaluation of micro capsules.

3. **Tablets:**
 a. Formulation of different types of tablets, granulation
 technology on large-scale by various techniques
 Physics of tablets making
 Different types of tablet compression machinery
 Equipments employed evaluation of tablets
 b. Coating of tablets :
 Types of coating, film forming materials
 Formulation of coating solution
 Equipments for coating, coating process
 Evaluation of coated tablets
 c. Stability kinetics
 Quality assurance

4. **Parenteral Products:**
 a. Pre formulation factors, routes of administration,
 water for injection
 Pyrogenicity, non aqueous vehicles, isotonicity and
 Methods of its adjustment
 b. Formulation details, containers and closures and selection.
 c. Pre filling treatment, washing of containers and closures,
Preparation of solution and suspensions,
Filing and closing of ampoules, vials, infusion fluids, lyophilization
Preparation of sterile powders, equipment for large scale manufacture
Evaluation of parenteral products

d. Aseptic techniques – sources of contamination and methods of prevention
 Design of aseptic area, laminar flow bench services and maintenance

e. Sterility testing of pharmaceuticals.

5. Sterility products:
 Definition, primary wound dressing,
 Absorbents, surgical cotton, surgical gauzes etc.,
 Bandages, adhesive tape, protective cellulosic hemostatics,
 official dressings,
 Absorbable and non absorbable sutures, ligatures and catguts.
 Medical prosthetics
 Organ replacement materials

6. Packaging of pharmaceutical products:
 Packaging components,
 Types, specifications and methods of evaluation, stability aspects of packaging.
 Packaging equipments,
 Factors influencing choice of containers,
 Legal and other official requirements for containers,
 package testing.

4.7.2. Practicals 4 hrs/week

1. Experiments to illustrate preparation, stabilization, physical and biological evaluation of pharmaceutical products like powders, capsules, tablets, parenterals, microcapsules, surgical dressing etc.

2. Evaluation of materials used in pharmaceutical packaging.
PHARMACEUTICAL INDUSTRIAL MANAGEMENT

4.7.3. Theory 4 hrs / week

1. Concept of Management:
 Administrative Management
 Planning
 Organizing
 Staffing, Directing
 Controlling
 Entrepreneurship development

 Operative Management
 Personnel, Materials
 Production, Financial
 Marketing, Time/Space, Margin/Morale

 Principles of Management
 Co-ordination, Communication, Motivation, Decision-making
 Leadership
 Innovation, Creativity
 Delegation of Authority
 Responsibility, Record Keeping

 Identification of key points to give maximum thrust for
devolution and perfection.

2. Accountancy:
 Principles of Accountancy,
 Ledger posting and book entries,
 Preparation of trial balance,
 Columns of a cash book,
 Bank reconciliation statement,
 Rectification of errors,
 Profits and loss account,
 Balance sheet, purchase,
 Pricing of stocks, Cheques,
 Bills of exchange,
 Promissory notes hundies,
 Documentary bills.

3. Economics:
 Principles of economics with special laws of
 Demand and supply,
 Demand schedule, demand curves,
 Labor welfare,
 General Principles of insurance inland and foreign trade,
 Procedure of exporting
 Procedure of Importing goods.
4. **Pharmaceutical Marketing:**
 Functions, buying, selling, transportation, storage,
 Finance, feedback, information
 Channels of distribution,
 Wholesale, retail, departmental store,
 Multiple shop and mail order business.

5. **Salesmanship:**
 Principles of sales promotion
 Advertising,
 Ethics of sales, merchandising,
 literature, detailing,
 Recruitment, training,
 evaluation, compensation to the pharmacist.

6. **Market Research:**
 a. Measuring & Forecasting Market Demands
 b. Major concept in demand measurement,
 c. Estimating current demand, Geo-demographic analysis,
 e. Market Segmentation
 f. Market Targeting.

7. **Materials Management:**
 A brief exposure or basic principles of materials management
 Major areas, scope, purchase,
 stores, inventory control
 Evaluation of materials management.

8. **Production Management:**
 A brief exposure of the different aspects of
 Production Management
 Visible and Invisible inputs,
 Methodology of Activities,
 Performance Evaluation Technique
1. Drugs Acting on the Gastrointestinal Tract:
 a). Antacids, Anti Secretory and Anti-ulcer drugs.
 b). Lacatives and antidiarrhoeal drugs.
 c). Appetite Stimulants and Suppressants.
 d). Emetics and anti-emetics.
 e). Miscellaneous – Carminatives, demulcents, protectives, adsorbents, astringents, digestants, enzymes and mucolytics.

2. Pharmacology of Endocrine System:
 a). Hypothalamic and pituitary hormones
 b). Thyroid hormones and anti thyroid drugs, parathormone, calcitonin and Vitamin D.
 c). Insulin, oral hypoglycaemic agents & glucagons.
 d). ACTH and corticosteroids.
 e). Androgens and anabolic steroids.
 f). Estrogens, progesterone and oral contraceptives.
 g). Drugs acting on the uterus.

3. Chemotherapy:
 a). General Principles of Chemotherapy.
 b). Sulfonamides and cotrimoxazole.
 c). Antibiotics–Penicillins, Cephalosporins, Chloramphenicol Erythromycin, Quinolones and Miscellaneous Antibiotics.
 d). Chemotherapy of tuberculosis, leprosy, fungal diseases, viral diseases, urinary tract infections and sexually transmitted diseases.
 e). Chemotherapy of malignancy and Immunosuppressive Agents.

4. Principles of Toxicology:
 a). Definition of poison, general principles of treatment of poisoning with particular reference to barbiturates, opioids, organophosphorous and atropine poisoning.
 b). Heavy metals and heavy metal antagonists.
1. Experiments on Isolated Preparations:

 a). To calculate the pA$_2$ Value of atropine using acetylcholine as an agonist on rat ileum preparation.
 b). To calculate the pA$_2$ Value of mepyramine or chlorpheniramine using histamine as agonist on guinea pig ileum.
 c). To estimate the strength of the test sample of agonist / drug (e.g. Acetylcholine, Histamine, 5-HT, Oxytocin, etc) using a suitable isolated muscle preparation employing matching bioassay,Bracketing assay, Three point assay and four point bioassay.

2. Pharmacology of the Gastrointestinal Tract:

 To study the Anti-secretary and anti-ulcer activity using pylorus ligated rats.

3. Clinical pharmacology:

 To determine the effects of certain clinically useful drugs on human volunteers like:
 a). Antihistaminics
 b). Anti-anxiety and sedative drugs
 c). Analgesics
 d). Beta blockers.
SEMESTER – VII

PHARMACEUTICAL CHEMISTRY – VII
(Medicinal Chemistry – II)

4.7.5. Theory: 3 Hours/Week

Synthetic procedures of selected drugs, mode of action, uses, structure activity relationship including Physio-Chemical properties of the following classes of drugs:

1. **Steroids and related drugs:**
 Steroidal nomenclature
 Stereochemistry,
 - Introduction stereochemistry of Androgens and Anabolic agents
 - Stereochemistry of Estrogens, Progesterones and adrenocorticoids
 Synthesis Androgens and Anabolic agents,
 Synthesis and SAR Estrogens
 Synthesis and SAR progestational agents
 Synthesis and SAR of adrenocorticoids.

2. **Drugs acting on the Central Nervous System:**
 General Anesthetics,
 - Introduction, Classification, mode of action and Properties
 - Chemistry and Synthesis
 Local Anesthetics,
 - Introduction, Classification, mode of action and Properties
 - SAR
 - Chemistry and Synthesis
 Hypnotics and Sedatives,
 - Classification, mode of action, properties
 - SAR
 - Synthesis
 Opioid analgesics,
 - Introduction, Classification, mode of action and Properties
 - SAR
 - Chemistry and Synthesis
 - Synthesis
 Antitussives,
 - Chemistry and SAR
 - Synthesis
 Anti convulsants,
 - Chemistry and SAR
 - Synthesis
Antiparkinsonism drugs,
CNS stimulants,
Chemistry and SAR
Synthesis
Psychopharmacological agents
(neuroleptics, antidepressants, anxiolytics).
Introduction, mode of action, properties
SAR and chemistry
SAR
Synthesis

3. Diuretics,
Classification, mode of action, properties and other chemistry
SAR
Synthesis
Cardiovascular drugs,
Introduction, mode of action, properties chemistry
SAR
Anti anginian drugs and Vasodilators
Anti arrhythmic drugs
Anti hypertension and Anti hyper lipidemic agents
Anticoagulant
Chemistry and SAR
Synthesis
Antiplatelet drugs.
Chemistry and SAR
Synthesis

Biochemical approaches in drug designing wherever applicable should be discussed.

4.7.5. Practicals 4 hrs / week

1. Workshop on stereomodel use of some selected drugs.

2. Synthesis of selected drugs from the course content involving two or more steps and their spectral analysis.

3. Establishing the Pharmacopoeial standards of the drugs synthesized.
1. Preformulation studies:

 a. Study of physical properties of drug like physical form
 Particle size, shape, density,
 Wetting dielectric constant.
 Solubility, dissolution
 Organoleptic property
 Stability and bioavailability.

 b. Study of chemical properties of drugs like
 Hydrolysis,
 Oxidation,
 Reduction,
 Racemization,
 Polymerization
 Formulation
 Stability of products.

 c. Study of pro-drugs in solving problems related to
 Stability,
 Bioavailability
 Elegancy of formulations.

2. Design,
 Development
 Process validation methods
 Pharmaceutical operations involved in the production
 Pharmaceutical products with special reference to Tablets,
 Suspensions.

3. Stabilization and stability testing protocol for various
 Pharmaceutical products.
 Liquid Oral Preparations
 Solid Dosage forms
 Parental Preparations
 Cosmetic Preparations
 Biological Products
4. Performance evaluation methods:

 a. In vitro dissolution studies for solid dosage forms
 Tablets, Capsules, Powders
 Sustained release dosage forms
 Interpretation of dissolution data.
 Tablets, Capsules, Powders
 Sustained release dosage forms

 b. Bioavailability studies
 Bioavailability testing protocol
 Bioavailability testing procedures.

 c. In vivo methods of
 Evaluation
 Statistical treatment.

5. GMP Quality assurance, Quality-audit.

6. Controlled released formulations.
 Design,
 Development,
 Production
 Evaluation

4.8.1. Practicals 3 hrs/week

1. Preformulation studies including drug-excipient compatibility
 studies, effect of stabilizers, preservatives etc. in dosage
 form design.

2. Experiments demonstrating improvement in bioavailability
 through prodrug concept.

3. Stability evaluation of various dosage forms and their expiration
 dating.

4. Dissolution testing and data evaluation for oral solid dosage forms.

5. Evaluation of Bioequivalence of some marketed products.

6. In vivo bioavailability evaluation from plasma drug concentration
 and urinary excretion curves.

7. Design, development and evaluation of controlled release
 formulations.
SEMESTER-VIII

PHARMACEUTICAL ANALYSIS - III

4.8.3. Theory

3 hrs / week

Introduction

A. Quality Assurance:

1. GLP
 ISO 9000
 TQM
 Quality Review & Quality Documentation

2. Regulatory control
 Introduction
 Regulatory drug analysis
 Interpretation of analytical data

3. Validation, quality audit:
 Quality of equipment
 Validation of equipment
 Validation of analytical procedures

B. The theoretical aspects, basic instrumentation, elements of
 Interpretation of spectra, and applications of the following
 Analytical techniques should be discussed:

1. Ultraviolet and visible spectrophotometry
 Theoretical aspects
 Instrumentations
 Interpretation of spectra
 Applications

2. Fluorimetry
 Theoretical aspects
 Instrumentations
 Interpretation & Applications

3. Infrared spectrophotometry
 Theoretical aspects
 Instrumentations
 Interpretation & Applications
4. Nuclear Magnetic resonance spectroscopy including 13c NMR
 Theoretical aspects
 Instrumentations
 Interpretation of spectra & Applications

5. Mass Spectrometry
 Theoretical aspects
 Instrumentations
 Interpretation of spectra
 Applications

6. Flame Photometry
 Theoretical aspects
 Instrumentations
 Interpretation & Applications

7. Emission Spectroscopy
 Theoretical aspects
 Instrumentations
 Interpretation & Applications

8. Atomic Absorption Spectroscopy
 Theoretical aspects
 Instrumentations
 Interpretation & Applications

9. X-ray Diffraction
 Theoretical aspects
 Instrumentations
 Interpretation & Applications

10. Radio immunoassay
 Theoretical aspects
 Instrumentations
 Interpretation & Applications

4.8.2. Practicals 4 hrs/week

1. Quantitative estimation of at least ten formulations containing
 single drug or more than one drug, using instrumental techniques

2. Estimation of Na, K, Ca ions using flame photometry

3. IR of samples with different functional groups (-COOH , -COOR,
 -CONHR; -NH$_2$, -NHR, -OH , etc

4. Workshop to interpret the structure of simple organic compounds
 using UR, IR, NMR and MS
1. Drug metabolism and Concepts of Pro drugs.
 Pathways of metabolism, Microsomal reactions
 Non microsomal oxidation
 Drug conjugation
 Stereochemical aspects of drug metabolism, Pro drug

2. Synthetic procedures of selected drugs, mode of action, uses, structure activity relationship (including physiochemical aspects) of the following classes of drugs. (Biochemical approaches in drug designing wherever applicable should be discussed).

 a. Antimetabolites (including sulfonamides).
 Antifolates
 Amino acids Antagonists, phenyl Alanine metabolites
 Glutamic acids Antimetabolites Vitamin Antagonists
 Gaba transaminase inhibitor and Beta lactamasa, ACEI

 b. Chemotherapeutic agents used in Protozoal, Parasitic and other infection.
 Introduction, classification, physiochemical Properties,
 Mode of action of Protozoal drugs
 SAR
 Synthesis
 Anti amoebic drugs
 Leishmaniasis drugs
 Drugs used in Trichomoniasis
 Anti malarials

 c. Antineoplastic agents.
 Introduction, classification, properties and mode of action
 SAR
 Synthesis

 d. Anti-viral including anti-HIV agents.
 Introduction, classification, properties and mode of action
 SAR
 Synthesis
e. Immunosuppressive and immuno stimulants.
 Introduction, classification, properties and mode of action
 SAR
 Synthesis
 Synthesis

3. Amino acids, peptide, nucleotides and related drugs.

i) Thyroid and Anti thyroid drugs.
 Introduction, classification, properties and mode of action
 SAR
 Synthesis
 Synthesis

ii) Insulin and oral hypoglycemic agents.
 Introduction, classification, properties and mode of action
 SAR
 Synthesis
 Synthesis

iii) Peptidomimetics and nucleotidomimetics
 Introduction, classification, properties and mode of action
 SAR
 Synthesis

f. Diagnostic agents.
 Introduction, classification, properties and mode of action
 SAR
 Synthesis

g. Pharmaceutical Aids.
 Anti – Oxidants
 Preservatives
 Coloring agents
 Filtering aids , diluents , expients
 Suspending agents , adsorbents and others
4.8.3. Practicals 3 hrs / week

1. Experiments designed on drug metabolism:
 a. Preparation of S9 and microsomes from tissue homogenates and standardization of protein.
 b. Effect of Phenytoin pretreatment on microsomal cytochrome p450, cytochrome b5, and NADPH-Cytochrome C-reductase and comparison of microsomes from control.
 c. Determination of microsomal aminopyrine demethylase and p-nitroanisole o-demethylase activities.
 d. Determination of microsomal azo- and nitroreductase activities.

2. Synthesis of selected drugs.

3. Establishing the pharmacopoeal standards and spectral studies.
1. World-wide trade in medicinal plants
 Derived products with special reference to diosgenin (disocorea), taxol (Taxus sps), digitalis
 Tropane alkaloid containing plants
 Papain, Cinchona, Ipecac, Liquorice, Ginseng, Aloe, Valerian, Rauwolfia
 Plants containing laxatives

2. A brief account of plant based industries
 Institutions involved in work on medicinal and aromatic plants in India
 Utilization and production of phytoconstituents such as quinine, calcium sennosides
 Podophyllotoxin, diosgenin, Solasodine and tropane alkaloids

3. Utilization of aromatic plants
 Derived products
 Special reference to sandalwood oil, mentha oil
 Lemon grass oil, vetiver oil
 Geranium oil and eucalyptus oil

4. Historical development of plant tissue culture
 Types of cultures
 Nutritional requirements
 Growth and their maintenance
 Applications of plant tissue culture in pharmacognosy

5. Chemotaxonomy of medicinal plants
 Introduction
 Characters studied in chemotaxonomy
 Application of chemotaxonomy

6. Marine Pharmacognosy
 Introduction
 Cardiovascular active substance
 Cytotoxic compounds
 Antimicrobial compounds
 Antibiotic compounds
 Anti-Inflammatory and Antispasmodic Agents
 Marine toxins
 Miscellaneous compounds
Novel medicinal agents from marine sources

7. Natural allergens
 Photosensitizing agents
 Fungal toxins

8. Herbs as health foods
 Nutraceuticals
 Antioxidants, PUFA, Probiotics, Prebiotics
 Dietary fibres, Omega-3 Fatty acids
 Spirulina, Royal jelly, Soya, Garlic

9. Herbal cosmetics
 Cosmeceuticals
 Phyto-Cosmeuticals
 Sources, Chemical constituents and Therapeutic benefit
 Retinoic acid, Alpha-hydroxy acids, Boswellic acids
 Vitamin C and Vitamin E, Co-enzyme and Miscellaneous

4.8.4. Practicals

1. Isolation of some selected phytoconstituents studied in theory
2. Extraction of volatile oils and their chromatographic profiles
3. Some experiments in plant tissue culture
SEMESTER – VIII

PHARMACOLOGY – IV
(Clinical Pharmacy and Drug Interactions)

4.8.5 Theory: 4 hrs/week

1. Introduction to Clinical Pharmacy.
 Concept of Clinical Pharmacy

2. Basic Concepts of Pharmacotherapy.
 a. Clinical Pharmacokinetics
 Individualization of Drug Therapy
 b. Drug Delivery Systems
 Biopharmaceutic
 Therapeutic Considerations
 c. Drug Use during:
 Infancy
 Elderly
 d. Drug use during pregnancy.
 First trimester
 Second trimester
 Third trimester
 e. Drug induced diseases.
 f. The Basics of Drug Interactions.
 Pharmacokinetics
 Pharmacodynamic
 Protein Binding
 Displacement
 g. General Principles of Clinical Toxicology.
 Introduction
 Types of toxic reaction
 h. Interpretation of Clinical Laboratory Tests.
 Medical Statistics
 Students t-test

3. Important Disorders of Organ Systems and their Management:

 a. Cardiovascsular Disorders:
 Hypertension,
 Congestive Heart Failure,
 Angina,
 Acute Myocardial Infarction,
 Cardiac arrhythmias

68
b. CNS Disorders:
 Epilepsy,
 Parkinsonism,
 Schizophrenia,
 Depression

c. Respiratory Disease:
 Asthma

d. Gastrointestinal Disorders:
 Peptic ulcer,
 Ulcerative colitis,
 Hepatitis, Cirrhosis

e. Endocrine Disorders:
 Diabetes mellitus
 Thyroid Disorders

f. Infectious Diseases:
 Tuberculosis,
 Urinary Tract Infection,
 Enteric Infections,
 Upper Respiratory Infections

g. Hematopoietic Disorders:
 Anemias
 Drugs used

h. Joint and Connective Tissue Disorders:
 Rheumatic diseases,
 Gout
 Hyperuricemia.

i. Neoplastic Diseases:
 Acute Leukaemias,
 Hodgkin’s disease

4. Therapeutic Drug Monitoring.
 Removal of samples
 Estimation
 Validation

 Prophylactic
 Therapeutic
 Emergency
4.8.6. List of Elective Subjects

1. Pharmaceutical Marketing
2. Medicinal Plant biotechnology.
3. Quality assurance.
4. Drug design and lead identification.
6. Cosmeticology.
7. Packaging technology.
8. Any other emerging area availing the local expertise.

** * **